首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous reports have shown that thrombin and activators of protein kinase C (PKC) inhibit neurite outgrowth (NOG) in neuroblastoma cells cultured in serum-free medium. Therefore, we tested the hypothesis that PKC activation mediates the effect of thrombin on NOG in murine neuroblastoma NB-2a cells. After 2 h in serum-free medium, 70% of the cells displayed neurites; addition of 300 ng/ml thrombin reduced NOG to 24% within 1 h. This inhibition was reduced after NB-2a cells were pretreated for 24 h with 200 nM phorbol dibutyrate down-regulate PKC. Thrombin and phorbol 12-myristate 13-acetate inhibited NOG in an additive way and the protein kinase inhibitors H-7, H-8, and HA1004 reversed the effect of thrombin on NOG with a rank order of activity consistent with PKC inhibition. Furthermore, PKC was translocated from the cytosol to a membrane-bound form 5 to 10 min after addition of thrombin. These findings indicate that thrombin inhibits NOG through a PKC-dependent pathway. Thrombin stimulates the synthesis of the phospholipid platelet-activating factor (PAF) in some cells. However, NOG was markedly stimulated when PAF or its analogue carbamyl-PAF were added to NB-2a cells in medium with serum. Furthermore, the PAF receptor antagonist SRI 63072 inhibited NOG in NB-2a cells in serum-free medium. These cells accumulated PAF with kinetics similar to that of NOG inducPAF was synthesized by the de novo pathway, as shown by the incorporation of [3H]choline. These findings suggest that PAF is a mediator of NOG in NB-2a cells. Thrombin neither stimulates nor inhibits PAF synthesis in these cells.  相似文献   

2.
It is shown that 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), a specific inhibitor of protein kinase C, induces neuritogenesis in neuro 2a cells. The percentage of differentiated cells was 9%, 20%, 59% and 85% at 0, 17, 85 and 500 microM H7, respectively. The number of neurites cell increased 2-, 8- and 14-fold over the controls for 17, 85 and 500 microM H7, respectively. These results indicate that protein kinase C plays a key role in the control of differentiation of neural cells and that its specific inhibition may be of basic as well as of practical importance.  相似文献   

3.
We have previously seen that protein kinase C (PKC) epsilon induces neurite outgrowth and that PKCdelta and PKCtheta elicit apoptosis in neuroblastoma cells. In this study we investigate the effects of cell-permeable C(2)-ceramide on these events in SK-N-BE(2) neuroblastoma cells. C(2)-ceramide abolishes neurite formation induced by overexpression of PKCepsilon and, in cells overexpressing PKCdelta or PKCtheta, ceramide treatment leads to apoptosis. Exposure to C(2)-ceramide also suppressed neurite outgrowth induced by retinoic acid, but ceramide did not abrogate neurite induction by treatment with the ROCK inhibitor Y-27632, demonstrating that C(2)-ceramide is not a general inhibitor of neurite outgrowth. The neurite-suppressing effect occurs independently of cell-death. Furthermore, C(2)-ceramide relocated PKCepsilon and the isolated regulatory domain of PKCepsilon from the cytosol to the perinuclear region. In contrast, neither the localization of PKCdelta nor of PKCtheta was affected by C(2)-ceramide. Taken together, the data indicate that the neurite-inhibiting effect of C(2)-ceramide treatment may be caused by a re-localization of PKCepsilon and thus identify a functional consequence of ceramide effects on PKCepsilon localization.  相似文献   

4.
Recent reports suggest that protein kinase C is involved in neural differentiation. We show that 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), the more specific inhibitor of protein kinase C known, induces morphological and functional differentiation of neuro 2a cells, as indicated by the marked increase in the number of neurites/cell and in acetylcholinesterase activity. HA 1004 does not induce differentiation of neural cells. The induction of differentiation by H7 was very rapid; 3 h after addition of H7 the percentages of differentiated cells were 17, 33, 37, 55, and 75% for 17, 50, 85, 250, and 500 microM H7, respectively, while for controls it was 9%. When 500 microM H7 was added to the culture medium, protein kinase C was inhibited by 72 and 62% in cytosol and membrane, respectively. Also, acetylcholinesterase activity (a marker of functional differentiation) increased with time, reaching a 7-fold increase after 48 h.  相似文献   

5.
The objectives were to investigate the roles of different calpains and protein kinase C (PKC) isoforms in muscle differentiation. Concentrations of mu- and m-calpain increased significantly whereas PKCalpha and delta declined significantly during L8 myoblast differentiation. Both mu-calpain and m-calpain antisense oligonucleotides inhibited myotube formation and creatine kinase activity during L8 myoblast differentiation. These results implied that both mu- and m-calpain were involved in L8 myoblast differentiation. To investigate the involvement of calpain in regulation of PKC concentrations, mu-calpain antisense oligonucleotides were added to L8 myoblasts. PKCalpha remained unchanged and PKCdelta declined. By adding m-calpain antisense oligonucleotides instead, PKCalpha level remained unchanged and PKCdelta concentrations increased significantly during differentiation. These results suggest that PKCalpha, but not PKCdelta, is the substrate for mu-calpain and PKCalpha and delta are the substrates for the m-calpain. In addition, more phosphorylated myogenin was found in day 2 antisense oligonucleotides treated L8 cells. It is concluded that the decline of PKCalpha mediated by m- and mu-calpain is essential for L8 myoblast differentiation. The decline of PKC during myoblast differentiation may cause hypo-phosphorylation of myogenin, which in turn activates muscle-specific genes during myogenesis.  相似文献   

6.
Laminin is a potent stimulator of neurite outgrowth in rat pheochromocytoma (PC12) cells. Here, we investigated the role of protein kinase C (PKC) in the mechanism of laminin-mediated neurite outgrowth in PC12 cells. Phorbol ester activators of PKC have been shown to have divergent effects on laminin-mediated neurite outgrowth. Therefore, we tested the effect of the non-phorbol PKC activator, indolactam V. At 1.0 microM indolactam V inhibited laminin-mediated neurite outgrowth by 85%. Further, the PKC inhibitor H7 blocked the inhibitory effect of indolactam V on laminin-mediated neurite outgrowth. Direct measurement of protein kinase C activity in the soluble (cytosolic) and particulate (membrane) fractions of PC12 cells showed that laminin failed to alter protein kinase C activity. These data demonstrate that PKC activation inhibits laminin-mediated neurite outgrowth and that laminin does not activate PKC in PC12 cells.  相似文献   

7.
We recently reported that prostaglandin (PG) E2 stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain induced a gradual secretion of catecholamines from the cells (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). Here we examined the involvement of two signal pathways, Ca2+ mobilization and protein kinase C activation resulting from phosphoinositide metabolism, in the PGE2-induced catecholamine release. Either the Ca2+ ionophore ionomycin or 12-O-tetradecanoylphorbol 13-acetate (TPA) could enhance the release in the presence of ouabain, and ionomycin-induced release was additive to PGE2-induced release, but TPA-induced release was not additive. PGE2 dose-dependently stimulated the formation of diacylglycerol and caused the translocation of 4% of the total protein kinase C activity to become membrane-bound within 5 min. These effects were specific for PGE2 and PGE1 among PGs tested (PGE2 = PGE1 greater than PGF2 alpha greater than PGD2). Furthermore, the phosphoinositide-specific phospholipase C inhibitor neomycin inhibited PGE2-induced accumulation of inositol phosphates, diacylglycerol formation, translocation of protein kinase C, and also stimulation of catecholamine release. Both PGE2- and TPA-induced release were inhibited by the depletion of protein kinase C caused by prolonged exposure to TPA, but ionomycin-induced release was not inhibited. We recently found that the amiloride-sensitive Na+, H+-antiport participates in PGE2-evoked catecholamine release (Tanaka, T., Yokohama, H., Negishi, M., Hayashi, H., Ito, S., and Hayaishi, O. (1990) J. Neurochem. 54, 86-95). In agreement with our recent report, PGE2 and TPA induced a sustained increase in intracellular pH that was abolished by the protein kinase C inhibitor staurosporine but not by the calmodulin inhibitor W-7. Ionomycin also induced a marked increase in intracellular pH, but this increase was abolished by W-7 but not by staurosporine. These results demonstrate that PGE2-induced activation of the Na+, H(+)-antiport and catecholamine release in the presence of ouabain are mediated by activation of protein kinase C, rather than by Ca2+ mobilization, resulting from phosphoinositide metabolism.  相似文献   

8.
Protein kinase C purified from rat brain was found to be inhibited by suramin, a substance used originally in the therapy of antitrypanosomic infections and more recently proposed as antineoplastic agent. The inhibition of suramin was competitive with one of the substrates of the enzyme, ATP with a Ki of 10 microM. At concentrations adequate to inhibit the isolated enzyme, suramin was shown to slow the rate of proliferation of neuroblastoma NB2A cells in vitro and to induce their differentiation as evidenced by typical morphological changes.  相似文献   

9.
As reported previously [Acta Neurobiol. Exp. 57 (1997) 263], palmitoylcarnitine was observed to promote differentiation of neuroblastoma NB-2a cells with a concomitant inhibition of proliferation and of the phorbol ester stimulated activity of the protein kinase C (PKC). In the present study, palmitoylcarnitine was observed to inhibit phosphorylation of the PKC peptide substrate and to completely diminish binding of phorbol 12-myristate-13-acetate (PMA), although the effect was found to be uncompetitive. The exposure of NB-2a cells to palmitoylcarnitine in the presence of PMA resulted in a dramatic decrease in phosphorylation of the conventional and novel isozymes of PKC, mainly on serine. This effect was observed to be dose dependent. Inhibitors of serine/threonine phosphatases were not influencing the effect of palmitoylcarnitine what can point to an interaction between PKC and palmitoylcarnitine, affecting the process of autophosphorylation. These findings suggest that pamitoylcarnitine could be a natural modulator of PKC activity, thus regulating the process of cell differentiation.  相似文献   

10.
11.
12.
The possibility that protein kinase C is involved in phototransduction by phosphorylating rhodopsin was explored in situ and in vitro. Pretreatment of intact retinas with phorbol myristate acetate markedly increased the light-dependent phosphorylation of rhodopsin, with the greatest effects observed at lower light levels. Phorbol myristate acetate treatment did not affect rhodopsin phosphorylation in retinas not exposed to light, suggesting that protein kinase C modulates the phosphorylation state of rhodopsin in a light-dependent manner. Limited proteolysis of rhodopsin phosphorylated in situ indicates that protein kinase C modifies rhodopsin on a domain distinct from that recognized by rhodopsin kinase. In vitro, protein kinase C purified from bovine retinas phosphorylated unbleached and bleached rhodopsin. Our results are consistent with protein kinase C phosphorylating unbleached rhodopsin in response to low light, suggesting that protein kinase C plays a role in light adaptation.  相似文献   

13.
The role of protein kinase C activation in changes in muscarinic receptor functions and in the appearance of biochemical properties characteristic of neuronal cells was studied in SH-SY5Y human neuroblastoma cells induced to differentiate with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). A decrease in muscarinic receptor sensitivity with respect to agonist induced Ca2+ mobilization and receptor number parallelled the increase in membrane-associated protein kinase C (PK-C) activity. These changes occurred during the first 6 h of culture, and they were associated with rounding-up of cells. A subsequent decrease in particulate PK-C activity was followed by an increase in noradrenaline content, the appearance of an electrically excitable membrane, and an increase in the level of neuron-specific enolase. These changes were accompanied by a pronounced neurite outgrowth. 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (H-7), an inhibitor of PK-C and cyclic nucleotide-dependent protein kinases, enhanced the morphological differentiation induced by TPA, whereas N-(2-guanidinoethyl)-5-isoquinolinesulphonamide (HA-1004), which primarily inhibits cyclic nucleotide-dependent protein kinases, had no effect on the TPA-induced phenotypic differentiation. H-7 inhibited the decrease in muscarinic receptor sensitivity and receptor number, but had no effect on the appearance of the electrically excitable membrane or on the increase in the neuron-specific enolase level. Both H-7 and HA-1004 inhibited the TPA-induced increase in noradrenaline content.  相似文献   

14.
The mechanisms of muscarinic receptor-linked increase in cAMP accumulation in SH-SY5Y human neuroblastoma cells has been investigated. The dose-response relations of carbachol-induced cAMP synthesis and carbachol-induced rise in intracellular free Ca2+ were similar. The stimulated cAMP synthesis was inhibited by about 50% when cells were entrapped with the Ca2+ chelator BAPTA or in the presence of the protein kinase C (PKC) inhibitor staurosporine. Production of cAMP could be induced also by the Ca2+ ionophore, ionomycin and by TPA, an activator of PKC. When added together TPA and ionomycin had a synergistic effect. When cAMP synthesis was activated with cholera toxin, PGE1 or PGE1 + pertussis toxin carbachol stimulated cAMP production to the same extent as in control cells. Ca2+ and protein kinase C thus seem to be the mediators of muscarinic-receptor linked cAMP synthesis by a direct action on adenylate cyclase.  相似文献   

15.
Vitamin E inhibits protein kinase C activity   总被引:7,自引:0,他引:7  
Vitamin E (dl-alpha-tocopherol) has been found to inhibit in vitro brain protein kinase c with a half inhibitory concentration of 450 microM. The known plasma concentrations of vitamin E are one order of magnitude lower than the protein kinase c half-inhibitory concentration but it is also known that, at the membrane level where the active protein kinase c is located, the lipophilic vitamin E is more concentrated (Burton, G.W., Joyce, A. and Ingold, K.U. and Locke, S. (1983) Arch. Biochem. Biophys. 221, 281-290). It appears that vitamin E, in addition to its antioxidant function, may play a role in regulating the activity of protein kinase c.  相似文献   

16.
17.
18.
Endoplasmic reticulum (ER) stress has increasingly come into focus as a factor contributing to neuronal injury. Although caspase-dependent mechanisms have been implicated in ER stress, the signaling pathways involved remain unclear. In this study, we examined the role of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase pathway that is highly conserved in many systems for balancing cell survival and death. Prolonged treatment of the human neuroblastoma cell line SH-SY5Y with thapsigargin, an inducer of ER stress, increased cell death over 24-48 h, as measured by LDH release. Caspases were involved; increased levels of active caspase-3 and cleaved caspase substrate PARP were detected, and treatment with Z-VAD-FMK reduced thapsigargin-induced cytotoxicity. In contrast, inhibition of calpain was not protective, although calpain was activated following thapsigargin treatment. An early and transient phosphorylation of ERK1/2 occurred after thapsigargin-induced ER stress, and targeting this pathway with the MEK inhibitors U0126 or PD98059 significantly reduced cell death. Similar cytoprotection was obtained against brefeldin A, another ER stress agent. However, protection against ER stress via ERK inhibition was not accompanied by amelioration of caspase-3 activation, PARP cleavage, or DNA laddering. These data indicate that ERK may contribute to non-caspase-dependent pathways of injury after ER stress.  相似文献   

19.
The involvement of protein kinase C in the Ca2+-dependent phosphorylation of a 29 000-Mr insulin-granule membrane protein prepared from a rat insulinoma was investigated. Protein kinase C activity towards exogenous lysine-rich histone was detected in a cytosolic fraction prepared from an insulinoma homogenate in the presence of EGTA. This activity bound reversibly to insulin granules in a Ca2+-dependent manner. Phosphatidylserine liposomes removed both protein kinase C activity and the 29 000-Mr protein-phosphorylating activity from the cytosolic fraction in a Ca2+-dependent fashion. Protein kinase C activity and the enzymic activity responsible for the phosphorylation of the 29 000-Mr granule protein behaved identically on sucrose-density-gradient centrifugation, ion-exchange chromatography, (NH4)2SO4 fractionation and gel filtration of the cytosolic fraction. These results are consistent with protein kinase C being the enzyme responsible for the phosphorylation of the 29 000-Mr insulin-granule membrane protein.  相似文献   

20.
We have previously reported that inhibition of protein kinase C induces differentiation of neuroblastoma cells in culture. It is shown now that actinomycin D, a well known inhibitor of DNA synthesis, reduces selectively the content of protein kinase C and induces neuritogenesis in Neuro 2a cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号