首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the diphtheria toxin receptor in cytosol translocation   总被引:6,自引:0,他引:6  
The role of the receptor in the transport of diphtheria toxin (DT) to the cytosol was examined. A point-mutant form of DT, CRM 107 (CRM represents cross-reacting material), that has an 8,000-fold lower affinity for the DT receptor than native toxin was conjugated to transferrin and monoclonal antibodies specific for the cell-surface receptors T3 and Thy1. Conjugating the binding site-inactivated CRM 107 to new binding moieties reconstituted full toxicity, indistinguishable from native DT linked to the same ligand, indicating that the entry activity of the DT B chain can be fully separated from the receptor binding function. Like DT, the toxin conjugates exhibited a dose-dependent lag period before first-order inactivation of protein synthesis. Inactivation of the binding site of the toxin portion of the conjugate was found to have no effect on the kinetics of protein synthesis inactivation. The receptor used by the toxin determined the length of the lag period relative to the killing rate. Comparing the potency of CRM 107 conjugates with native DT, standardized for receptor occupancy, shows that new receptors can be as or more efficient than the DT receptor in transporting DT to the cytosol. The transferrin-CRM 107 conjugate, unlike native DT, was highly toxic to murine cells. All the data presented are consistent with a model that the DT receptor, other than initiating rapid internalization of the toxin to low pH compartments, is unnecessary for transport of the toxin to the cytosol and that membrane translocation activity is expressed by the DT B subunit independent of the receptor-binding site.  相似文献   

2.
Diphtheria toxin belongs to a group of toxic proteins that enter the cytosol of animal cells. We have here investigated the effect of NH2-terminal extensions of diphtheria toxin on its ability to become translocated to the cytosol. DNA fragments encoding peptides of 12-30 amino acids were fused by recombinant DNA technology to the 5'-end of the gene for a mutant toxin. The resulting DNA constructs were transcribed and translated in vitro. The translation products were bound to cells and then exposed to low pH to induce translocation across the cell membrane. Under these conditions all of the oligopeptides tested, including three viral peptides and the leader peptide of diphtheria toxin, were translocated to the cytosol along with the enzymatic part (A-fragment) of the toxin. Neither hydrophobic nor highly charged sequences blocked translocation. The results are compatible with a model in which the COOH-terminus of the A-fragment first crosses the membrane, whereas the NH2-terminal region follows behind. The possibility of using nontoxic variants of diphtheria toxin as vectors to introduce peptides into the cytosol to elicit MHC class I-restricted immune response and clonal expansion of the relevant CD8+ cytotoxic T lymphocytes is discussed.  相似文献   

3.
Diphtheria toxin (DT) binds to the EGF-like domain of the DT receptor (DTR), followed by internalization and translocation of the enzymatically active fragment A into the cytosol. The juxtamembrane domain (JM) of the DTR is the linker domain connecting the transmembrane and EGF-like domains. We constructed mutants of DTRs with altered JMs and studied their abilities for DT intoxication. Although DTR mutants with extended JMs showed normal DT binding activity, the cells expressing the mutants showed both reduced translocation of DT fragment A into the cytosol and reduced sensitivity to DT, when compared with cells expressing wild-type DTR. These results indicate that the JM contributes to DT intoxication by providing a space appropriate for the interaction of DT with the cell membrane. The present study also indicates that consideration of epitopes of an immunotoxins would be an important factor in the design of potent immunotoxins.  相似文献   

4.
A number of protein toxins act by translocating an enzymatically active polypeptide to the cytosol. The translocation process is best understood in the case of diphtheria toxin which binds to cell surface receptors, is then taken up by endocytosis and is subsequently translocated to the cytosol, where it inactivates elongation factor 2. The translocation of the enzymatically active part of the toxin can be induced at the level of the plasma membrane upon exposure to low pH of cells with surface-bound toxin. Receptor molecules appear to be involved in the translocation process, which also requires an inward directed H(+)-gradient and permeant anions. Cation-selective channels are formed in the membrane upon toxin entry. The B-fragment alone is much more efficient in inducing channels than the whole toxin. The current model of the translocation process is discussed.  相似文献   

5.
Diphtheria toxin can be used to selectively kill target cells by coupling it to cell-type-specific binding moieties such as monoclonal antibodies. These reagents have important potential in treating diseases, selectively ablating cell populations in experimental systems and for understanding how proteins cross membranes. Point mutations and deletions in the diphtheria toxin gene have been used to identify and localize regions of diphtheria toxin involved in cell killing. Mutations have been identified that prevent binding of the toxin to a cell surface receptor yet these mutations do not inhibit the cell entry activity or the intracellular cytotoxicity of the toxin. Coupling of these mutant toxins to new, cell-type-specific binding moieties yields potent reagents with up to 200,000-fold selectivity between target and nontarget cells. Mutations and deletions in the membrane transport regions are beginning to explain how the toxin enters cells and may also help in the design of more effective therapeutic reagents.  相似文献   

6.
Diphtheria toxin contains a trypsin-sensitive region with 3 closely spaced arginines in the sequence (Asn189, Arg190, Val191, Arg192, Arg193, Ser194). Cleavage of the toxin to yield A- and B-fragments ("nicking") appears to occur in a stochastic manner after either of these arginine residues. Isoelectric focusing of A-fragment prepared in vitro showed four bands of varying intensity with pI between 4.5 and 5.0, three of which could be accounted for by the three different cleavage sites. Exposure of cells with surface-bound toxin to pH less than 5.3 induces translocation of A-fragment to a position where it is shielded from external Pronase, presumably in the cytosol. A-fragment translocated in this manner had the same pI as the most acidic A-fragments, indicating that only A-fragments lacking both Arg192 and Arg193 are translocation-competent. This was confirmed by amino acid sequencing. Treatment of A-fragment with carboxypeptidase B eliminated the two bands with the highest pI while there was a concomitant increase in the bands corresponding to the two most acidic A-fragments. Such treatment of nicked diphtheria toxin increased the amount of translocated A-fragment and the ability of toxin to form cation-selective pores in the cell membrane. The site of trypsin cleavage therefore appears to be one of the factors limiting toxin entry to the cytosol.  相似文献   

7.
A detailed proteolysis study of internalized diphtheria toxin (DT) within rat liver endosomes was undertaken to determine whether DT-resistant species exhibit defects in toxin endocytosis, toxin activation by cellular enzymes or toxin translocation to its cytosolic target. Following administration of a saturating dose of wild-type DT or nontoxic mutant DT (mDT) to rats, rapid endocytosis of the intact 62-kDa toxin was observed coincident with the endosomal association of DT-A (low association) and DT-B (high association) subunits. Assessment of the subsequent post-endosomal fate of internalized mDT revealed a sustained endo-lysosomal transfer of the mDT-B subunit accompanied by a net decrease in intact mDT and mDT-A subunit throughout the endo-lysosomal apparatus. In vitro proteolysis of DT, using an endosomal lysate, was observed at both neutral and acidic pH, with the subsequent generation of DT-A and DT-B subunits (pH 7) or DT fragments with low ADP-ribosyltransferase activity (pH 4). Biochemical characterization revealed that the neutral endosomal DT-degrading activity was due to a novel luminal 70-kDa furin enzyme, whereas the aspartic acid protease cathepsin D (EC 3.4.23.5) was identified as being responsible for toxin degradation at acidic pH. Moreover, an absence of in vivo association of the DT-A subunit with cytosolic fractions was identified, as well as an absence of in vitro translocation of the DT-A subunit from cell-free endosomes into the external milieu. Based on these findings, we propose that, in rat, resistance to DT may originate from two different mechanisms: the ability of free DT-A subunits to be rapidly proteolyzed by acidic cathepsin D within the endosomal lumen, and/or the absence of DT translocation across the endosomal membrane, which may arise from the absence of a functional cytosolic translocation factor previously reported to participate in the export of DT from human endosomes.  相似文献   

8.
Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents like NH4Cl, procaine, and the ionophores monensin, FCCP, and CCCP, which increase the pH of intracellular vesicles. Antiserum, which is supposed to inactivate toxin only at the cell surface, protected only when it was added within a short period of time after modeccin. Compounds that increase the pH of intracellular vesicles, protected even when added after 2 h, indicating that modeccin remains inside vesicles for a considerable period of time before it enters the cytosol. After addition of diphtheria toxin to the cells, compounds that increase the pH of intracellular vesicles protected only approximately to the same extent as antitoxin. This indicates that after endocytosis diphtheria toxin rapidly enters the cytosol. At 20 degrees C, the cells were more strongly protected against modeccin than against diphtheria toxin. The residual toxic effect of diphtheria toxin at 20 degrees C could be blocked with NH4Cl whereas this was not the case with modeccin. This indicates that at 20 degrees C the uptake of diphtheria toxin occurs by the normal route, whereas the uptake of modeccin occurs by a less efficient route than that dominating at 37 degrees C. The results indicate that after endocytosis diphtheria toxin rapidly enters the cytosol from early endosomes with low pH (receptosomes). Modeccin enters the cytosol much more slowly, possibly after fusion of the endocytic vesicles with another compartment.  相似文献   

9.
A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH4Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells.  相似文献   

10.
A number of monoclonal antibodies against diphtheria toxin were isolated. Some of their properties were determined. Antibody 2 reacts with the region of between 30 and 45 kDa from the NH2 terminus of toxin. Antibody 7 reacts with the COOH-terminal 17-kDa region of toxin. These two antibodies show sharp contrasts in their effects on toxin action in cultured cells. When antibody 2 or 7 and toxin were mixed, incubated at 37 degrees C, and then added to sensitive Vero cells, antibody 7 blocked toxin action, but antibody 2 did not. When antibody 2 or 7 was added to cells to which toxin had been prebound at 4 degrees C, and the cells were then shifted to 37 degrees C, antibody 7 did not block toxin action, but antibody 2 inhibited intoxication. Antibody 7 blocked binding of 125I-toxin to cells and did not block degradation of toxin associated with cells. Antibody 2 did not block binding of 125I-toxin to cells, and was able to bind to cells in the presence of toxin. The results obtained from the effect of antibody 2 on degradation of 125I-toxin associated with cells resemble those seen with amines, which block toxin action but do not inhibit binding of toxin to cells. These facts show that antibody 2 does not block binding of toxin to cell surfaces, but blocks the entry of toxin into the cytosol at a step after binding of toxin to the receptor. Antibodies 14 and 15 react with fragment A of diphtheria toxin, but have no effect on any activity of toxin. The other monoclonal antibodies have effects on toxin binding and entry intermediate between those of 2 and 7.  相似文献   

11.
Entry of prebound diphtheria toxin at low pH occurred rapidly in the presence of isotonic NaCl, NaBr, NaSCN, NaI, and NaNO3, but not in the presence of Na2SO4, 2-(N-morpholino)ethanesulfonic acid neutralized with Tris, or in buffer osmotically balanced with mannitol. SCN- was the most efficient anion to facilitate entry. Uptake studies with radioactively labeled anions showed that SCN- was transported into cells 3 times faster than Cl-, while the entry of SO2-4 occurred much more slowly. The anion transport inhibitors 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and piretanide inhibited entry at low pH even in the presence of permeant anions. When cells with bound toxin were exposed to low pH in the absence of permeant anions, then briefly exposed to neutral pH and subsequently exposed to pH 4.5 in the presence of isotonic NaCl, toxin entry was induced. The data indicate that efficient anion transport at the time of exposure to low pH is required for entry of surface-bound diphtheria toxin into the cytosol. Since insertion of diphtheria toxin into the membrane occurs even in the absence of permeant anions, the results indicate that low pH is required not only for insertion of fragment B into the membrane, but also for the subsequent entry of fragment A into the cytosol.  相似文献   

12.
When cells with surface-bound diphtheria toxin were exposed to pH 4.5, the toxin became shielded against lactoperoxidase-catalyzed radioiodination, indicating that the toxin was inserted into the membrane. Cells thus treated had strongly reduced ability to take up 36Cl-, 35SO4(2-), and [14C]SCN-. The reduction of chloride uptake was strongest at neutral pH, whereas that of sulfate was strongest at acidic pH. Lineweaver-Burk plots indicated that the toxin treatment reduced the Jmax but not the Km for the anions. The toxin also inhibited the NaCl-stimulated efflux of 35SO4(2-), indicating that the toxin inhibits the antiporter. No inhibition was found when toxin-treated cells were not exposed to low pH, whereas exposure to pH 4.5 for 20 s induced close to maximal inhibition. Half-maximal inhibition was obtained after exposure to pH 5.4. The concentration of diphtheria toxin required to obtain maximal inhibition (0.3 micrograms/ml) was sufficient to ensure close to maximal toxin binding to the cells. Even in ATP-depleted cells and in the absence of permeant anions, low pH induced inhibition of anion antiport in toxin-treated Vero cells. There was no measurable inhibition of anion antiport in cells with little or no ability to bind the toxin.  相似文献   

13.
When Vero cells with surface-bound 125I-labeled, nicked diphtheria toxin were exposed to pH 4.5, two polypeptides of Mr 20,000 and 25,000 became protected against externally applied Pronase E. The 20-kDa polypeptide appears to be the toxin A-fragment, whereas the 25-kDa polypeptide must be derived from the B-fragment. Permeabilization of the cells with saponin allowed efflux of the 20-kDa fragment to occur, whereas most of the 25-kDa polypeptide remained associated with the cells. A number of compounds and conditions which protect cells against diphtheria toxin prevented the protection against Pronase E. Protection of the 25-kDa polypeptide occurred even when the transmembrane proton gradient (delta pH) was dissipated by acidification of the cytosol, whereas protection and release of the A-fragment were prevented under these conditions. Electrical depolarization and ATP depletion of the cells did not inhibit protection and release of the A-fragment. The data indicate that delta pH is required for the transfer of the A-fragment to the cytosol, whereas the insertion of part of the B-fragment into the membrane occurs at low pH, even in the absence of a delta pH.  相似文献   

14.
Diphtheria toxin A-fragment enters the cytosol of target cells, where it inhibits protein synthesis by catalyzing ADP-ribosylation of elongation factor 2 (EF-2). We have here analyzed toxin-induced protein synthesis inhibition in single cells by autoradiography and compared it with inhibition of protein synthesis in the whole cell culture. The data show that half-maximal protein synthesis inhibition in the whole cell population after a short incubation time is achieved by partially inhibiting protein synthesis in basically all the cells, while half-maximal protein synthesis inhibition after a long incubation time is due to a complete protein synthesis block in about half the cells in the population. We have also compared stable and unstable A-fragment mutants with respect to the kinetics of cell intoxication. While the toxicity of the stable mutants increased with time, the unstable mutants showed a similar toxicity at early and late time points. When studying the kinetics of cell intoxication by toxins with short cytosolic half-life, we could not detect any recovery of protein synthesis at late time points when all the mutant A-fragments should be degraded. This indicates that the ADP-ribosylation of EF-2 cannot be reversed by an endogenous activity in the cells. The data indicate that entry of toxin into a cell is not associated with an immediate block in protein synthesis, and that prolonged action of single A-fragment molecules in the cytosol is sufficient to obtain complete protein synthesis inhibition at low toxin concentrations.  相似文献   

15.
When 125I-labeled nicked diphtheria toxin bound to Vero cells was exposed to pH less than 5.0, a small fraction was reduced to yield A- and B-fragments. The pH required for reduction correlates well with that required to induce intoxication, and the amount of A-fragment released was of the same order as that required to intoxicate the cells. Conditions that protect cells against intoxication, such as acidification of the cytosol, treatment with anion transport inhibitors, or treatment with anti-diphtheria toxin antibodies, prevented the reduction of the interfragment disulfide in cell-bound toxin. In vitro, thioredoxin reduced nicked diphtheria toxin only at pH 5.0 and lower, and the reduction was inhibited by anti-toxin antibodies. This indicates that a conformational change in the toxin, necessary for reduction by the thioredoxin system, is prevented by the antibodies. Reduction by glutathione and cysteine was most efficient at neutral pH and was not inhibited by anti-toxin. The results are consistent with the possibility that cell-mediated reduction of the interfragment disulfide is a measure of the entry of fragment A into the cytosol.  相似文献   

16.
A fusion protein of acidic fibroblast growth factor and diphtheria toxin A-fragment was disulfide-linked to the toxin B-fragment. The complex bound specifically to diphtheria toxin receptors, and subsequent exposure to low pH induced the fusion protein to translocate to the cytosol. Heparin, inositol hexaphosphate and inorganic sulfate strongly increased the trypsin resistance of the growth factor part of the fusion protein, indicating tight folding, and they prevented translocation of the fusion protein to the cytosol. The data indicate that only a more disordered form of the growth factor is translocation competent.  相似文献   

17.
Lysosomotropic amines, such as ammonium chloride, are known to protect cells from the cytotoxic effects of diphtheria toxin. These drugs are believed to inhibit the transport of the toxin from a receptor at the cell exterior into the cytoplasm where a fragment of the toxin arrests protein synthesis. We studied the effects of lysosomotropic agents on the cytotoxic process to better understand how the toxin enters the cytoplasm. The cytotoxic effects of diphtheria toxin were not inhibited by antitoxin when cells were preincubated at 37 degrees C with toxin and ammonium chloride, exposed to antitoxin at 4 degrees C, washed to relieve the ammonium chloride inhibition, and finally warmed to 37 degrees C. The antigenic determinants of the toxin were, therefore, either altered or sheltered. It is likely that the combination of ammonium chloride and a low temperature trapped the toxin in an intracellular vesicle from which the toxin could proceed to the cytoplasm. Because lysosomotropic amines raise the pH within acidic intracellular vesicles, such as lysosomes, they could trap the toxin within such a vesicle if an acidic environment were necessary for the toxin to penetrate into the cytoplasm. We simulated acidic conditions which the toxin might encounter by exposing cells with toxin bound to their surface to acidic medium. We then measured the effects of lysosomotropic amines on the activity of the toxin to see if the acidic environment substituted for the function normally inhibited by the drugs. The drugs no longer protected the cells. This suggests that exposing the toxin to an acidic environment, such as that found within lysosomes, is an important step in the penetration of diphtheria toxin into the cytoplasm.  相似文献   

18.
Whereas diphtheria and the mechanism of action of diphtheria toxin, the bacterial molecule that induces the disease, have been studied and understood for some time, the receptor that allows animal cells to bind the toxin escaped identification until recently. The receptor was identified by its ability to confer toxin-sensitivity to mouse cells, which are normally toxin-resistant. Although mice are also naturally resistant, we now demonstrate that transgenic mice expressing the diphtheria toxin receptor are as sensitive to the toxin as are humans and other toxin-sensitive animals. These transgenic mice provide a suitable model for studying modern antidotes for diphtheria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号