首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.  相似文献   

2.
A small cluster of approximately 20,000 neurons in the ventral hypothalamus provide the body with key time-keeping signals and drive circadian rhythms. This circadian clock exhibits surprisingly complex substructures, with inputs from the retina, and outputs to other brain structures. Rather little is known of the neurotransmitters involved, or their regulation.  相似文献   

3.
Drosophila melanogaster display overt circadian rhythms in rest:activity behavior and eclosion. These rhythms have an endogenous period of approximately 24 hr and can adjust or "entrain" to environmental inputs such as light. Circadian rhythms depend upon a functioning molecular clock that includes the core clock genes period and timeless (reviewed in and ). Although we know that a clock in the lateral neurons (LNs) of the brain controls rest:activity rhythms, the cellular basis of eclosion rhythms is less well understood. We show that the LN clock is insufficient to drive eclosion rhythms. We establish that the prothoracic gland (PG), a tissue required for fly development, contains a functional clock at the time of eclosion. This clock is required for normal eclosion rhythms. However, both the PG clock function and eclosion rhythms require the presence of LNs. In addition, we demonstrate that pigment-dispersing factor (PDF), a neuropeptide secreted from LNs, is necessary for the PG clock and eclosion rhythms. Unlike other clocks in the fly periphery, the PG is similar to mammalian peripheral oscillators because it depends upon input, including PDF, from central pacemaker cells. This is the first report of a peripheral clock necessary for a circadian event.  相似文献   

4.
One of the big questions in biological rhythms research is how a stable and precise circa-24 hour oscillation is generated on the molecular level. While increasing complexity seemed to be the key, a recent report suggests that circa-24 hour rhythms can be generated by just four molecules incubated in a test tube.  相似文献   

5.
Circadian rhythms are the endogenous oscillations, occurring with a periodicity of approximately twenty-four hours, in the biochemical and behavioral functions of organisms. In mammals, the phase and period of the rhythm are synchronized to the daily light-dark cycle by light input through the eye. Certain retinal degenerative diseases affecting the photoreceptor cells, both rods and cones, in the outer retina reveal that classical opsins (i.e., rhodopsin and color opsins located in these cells) are essential for vision, but are not required for circadian photoreception. The mammalian cryptochromes and melanopsin (and possibly other opsin family pigments) have been proposed as circadian photoreceptor pigments that exist in the inner retina. Genetic analysis indicates that the cryptochromes, which contain flavin and folate as the light-absorbing cofactors, are the primary circadian photoreceptors. The classical photoreceptors in the outer retina, and melanopsin or other minor opsins in the inner retina, may perform redundant functions in circadian rhythmicity.  相似文献   

6.
In addition to its visual function, the mammalian eye detects light for a range of behavioral and physiological responses that are separate and apart from sight. Recent studies have begun to shed light on the areas of the brain that respond to such 'non-visual' photoreception in the human eye.  相似文献   

7.
Circadian clocks in prokaryotes   总被引:7,自引:0,他引:7  
Prokaryotes have long been thought incapable of expressing circadian (daily) rhythms. Recently, however, such biological 'clocks' have been discovered in several species of cyanobacteria. These endogenous timekeepers control gene expression on a global level in cyanobacteria. Even in cyanobacterial cultures that are growing with average doubling times more rapid than one per 24 h, the circadian clock controls gene expression and cell division. We have isolated mutants of the cyanobacterial circadian pacemaker and are currently characterizing the loci responsible for their altered period phenotypes.  相似文献   

8.
Resetting mechanism of central and peripheral circadian clocks in mammals   总被引:15,自引:0,他引:15  
  相似文献   

9.
10.
11.
C J Stoll 《Malacologia》1979,18(1-2):459-463
Extraocular photosensitivity in Aplysia fasciata was studied in the skin and in the central nervous system (CNS). Local illumination causes contractions of the muscles of the body wall, which are obviously mediated by the peripheral nervous system (PNS). Afferent sensory activity is supposedly mainly dependent on stretch reception. Light-induced peripheral reflexes habituate after repetitive stimulation in preparations in which the CNS is present. In preparations without CNS light-induced contractions are remarkably stronger and do not habituate after repititive stimulation. Central responses to peripheral stimulation could be evoked by both "light on" and "light off" stimulation, indicating that 2 types of photosensitive elements are present in the periphery. Observations on isolated CNS-preparations revealed that in the central ganglia photoreceptive elements are also present. Here, too, elements responding to the onset as well as elements responding to the offset of light have been detected.  相似文献   

12.
13.
Xu K  Zheng X  Sehgal A 《Cell metabolism》2008,8(4):289-300
Studies in mammals have indicated a connection between circadian clocks and feeding behavior, but the nature of the interaction and its relationship to nutrient metabolism are not understood. In Drosophila, clock proteins are expressed in many metabolically important tissues but have not been linked to metabolic processes. Here we demonstrate that Drosophila feeding behavior displays a 24 hr circadian rhythm that is regulated by clocks in digestive/metabolic tissues. Flies lacking clocks in these tissues, in particular in the fat body, also display increased food consumption but have decreased levels of glycogen and a higher sensitivity to starvation. Interestingly, glycogen levels and starvation sensitivity are also affected by clocks in neuronal cells, but the effects of neuronal clocks generally oppose those of the fat body. We propose that the input of neuronal clocks and clocks in metabolic tissues is coordinated to provide effective energy homeostasis.  相似文献   

14.
Circadian clocks are pervasive entities that allow organisms to maintain rhythms of approximately 24h, independently of external cues, thereby adapting them to the solar cycle. Recent studies have shown that molecular circadian clocks are important for the proper orchestration of the cell division cycle. For the first time, this provides a framework to understand the interactions between these two evolutionarily linked timers. Here we review the current model of the circadian clock and the molecular methods that can be used to investigate its function. We then map out links to the cell cycle at the cellular level. Furthermore, we review recent progress that has linked dysfunction of the clockwork with the pathogenesis of cancer. Disruption of circadian timing (as occurs in jet-lag, shift work and dementia) thus has far reaching consequences for normal regulation of cell division. The implications of this for the health of a "24-h society" are apparent.  相似文献   

15.
16.
Endogenous circadian rhythms are almost ubiquitous among organisms from cyanobacteria to mammals and regulate diverse physiological processes. It has been suggested that having an endogenous circadian system enables an organism to anticipate periodic environmental changes and adapt its physiological and developmental states accordingly, thus conferring a fitness advantage. However, it is hard to measure fitness directly and there is, to date, only limited evidence supporting the assumption that having a circadian system can increase fitness and therefore be adaptive. In this article, we report an evolutionary approach to examine the adaptive significance of a circadian system. By crossing Arabidopsis thaliana plants containing mutations that cause changes in circadian rhythms, we have created heterozygous 'Mother' (F1) plants with genetic variance for circadian rhythmicity. The segregating F2 offspring present a range of circadian rhythm periods. We have applied a selection to the F2 plants of short and long T-cycles under different competition strengths and found that the average phenotype of circadian period of the resulting F3 plants show a strong positive correlation with the T-cycle growth conditions for the competing F2 plants. Consistent with their circadian phenotypes, the frequency of long-period alleles was altered in the F3 plants. Our results show that F2 plants with endogenous rhythms that more closely match the environmental T-cycle are fitter, producing relatively more viable offspring in the F3 population. Thus, having a circadian clock that matches with the environment is adaptive in Arabidopsis.  相似文献   

17.
The circadian system of Neurospora crassa includes a molecular feedback loop that is entrainable by light. A recent study has shown that a second, elusive oscillator interacts with the feedback loop to drive output rhythms.  相似文献   

18.
19.
Albrecht U 《Neuron》2012,74(2):246-260
The mammalian circadian system, which is comprised of multiple cellular clocks located in the organs and tissues, orchestrates their regulation in a hierarchical manner throughout the 24?hr of the day. At the top of the hierarchy are the suprachiasmatic nuclei, which synchronize subordinate organ and tissue clocks using electrical, endocrine, and metabolic signaling pathways that impact the molecular mechanisms of cellular clocks. The interplay between the central neural and peripheral tissue clocks is not fully understood and remains a major challenge in determining how neurological and metabolic homeostasis is achieved across the sleep-wake cycle. Disturbances in the communication between the plethora of body clocks can desynchronize the circadian system, which is believed to contribute to the development of diseases such as obesity and neuropsychiatric disorders. This review will highlight the relationship between clocks and metabolism, and describe how cues such as light, food, and reward mediate entrainment of the circadian system.  相似文献   

20.
In mammals, the principal circadian clock within the suprachiasmatic nucleus (SCN) entrains the phase of clocks in numerous peripheral tissues and controls the rhythmicity in various body functions. During ontogenesis, the molecular mechanism responsible for generating circadian rhythmicity develops gradually from the prenatal to the postnatal period. In the beginning, the maternal signals set the phase of the newly developing fetal and early postnatal clocks, whereas the external light-dark cycle starts to entrain the clocks only later. This minireview discusses the complexity of signaling pathways from mothers and the outside world to the fetal and newborn animals' circadian clocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号