首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Most previous analyses of scrapie outbreaks have focused on flocks run by research institutes, which may not reflect the field situation. Within this study, we attempt to rectify this deficit by describing the epidemiological characteristics of 30 sheep flocks naturally-infected with classical scrapie, and by exploring possible underlying causes of variation in the characteristics between flocks, including flock-level prion protein (PrP) genotype profile. In total, the study involved PrP genotype data for nearly 8600 animals and over 400 scrapie cases.

Methodology/Principal Findings

We found that most scrapie cases were restricted to just two PrP genotypes (ARQ/VRQ and VRQ/VRQ), though two flocks had markedly different affected genotypes, despite having similar underlying genotype profiles to other flocks of the same breed; we identified differences amongst flocks in the age of cases of certain PrP genotypes; we found that the age-at-onset of clinical signs depended on peak incidence and flock type; we found evidence that purchasing infected animals is an important means of introducing scrapie to a flock; we found some evidence that flock-level PrP genotype profile and flock size account for variation in outbreak characteristics; identified seasonality in cases associated with lambing time in certain flocks; and we identified one case that was homozygous for phenylalanine at codon 141, a polymorphism associated with a very high risk of atypical scrapie, and 28 cases that were heterozygous at this codon.

Conclusions/Significance

This paper presents the largest study to date on commercially-run sheep flocks naturally-infected with classical scrapie, involving 30 study flocks, more than 400 scrapie cases and over 8500 PrP genotypes. We show that some of the observed variation in epidemiological characteristics between farms is related to differences in their PrP genotype profile; although much remains unexplained and may instead be attributed to the stochastic nature of scrapie dynamics.  相似文献   

2.

Background

Existing mathematical models for scrapie dynamics in sheep populations assume that the PrP gene is only associated with scrapie susceptibility and with no other fitness related traits. This assumption contrasts recent findings of PrP gene associations with post-natal lamb survival in scrapie free Scottish Blackface populations. Lambs with scrapie resistant genotypes were found to have significantly lower survival rates than those with susceptible genotypes. The present study aimed to investigate how these conflicting PrP gene associations may affect the dynamic patterns of PrP haplotype frequencies and disease prevalence.

Methodology/Principal Findings

A deterministic mathematical model was developed to explore how the associations between PrP genotype and both scrapie susceptibility and postnatal lamb mortality affect the prevalence of scrapie and the associated change in PrP gene frequencies in a closed flock of sheep. The model incorporates empirical evidence on epidemiological and biological characteristics of scrapie and on mortality rates induced by causes other than scrapie. The model results indicate that unfavorable associations of the scrapie resistant PrP haplotypes with post-natal lamb mortality, if sufficiently strong, can increase scrapie prevalence during an epidemic, and result in scrapie persisting in the population. The range of model parameters, for which such effects were observed, is realistic but relatively narrow.

Conclusions/Significance

The results of the present model suggest that for most parameter combinations an unfavourable association between PrP genotype and post-natal lamb mortality does not greatly alter the dynamics of scrapie and, hence, would not have an adverse impact on a breeding programme. There were, however, a range of scenarios, narrow, but realistic, in which such an unfavourable association resulted in an increased prevalence and in the persistence of infection. Consequently, associations between PrP genotypes and fitness traits should be taken into account when designing future models and breeding programmes.  相似文献   

3.

Background

Since 2002, active surveillance programmes have detected numerous atypical scrapie (AS) and classical scrapie cases (CS) in French sheep with almost all the PrP genotypes. The aim of this study was 1) to quantify the genetic risk of AS in French sheep and to compare it with the risk of CS, 2) to quantify the risk of AS associated with the increase of the ARR allele frequency as a result of the current genetic breeding programme against CS.

Methods

We obtained genotypes at codons 136, 141, 154 and 171 of the PRNP gene for representative samples of 248 AS and 245 CS cases. We used a random sample of 3,317 scrapie negative animals genotyped at codons 136, 154 and 171 and we made inferences on the position 141 by multiple imputations, using external data. To estimate the risk associated with PrP genotypes, we fitted multivariate logistic regression models and we estimated the prevalence of AS for the different genotypes. Then, we used the risk of AS estimated for the ALRR-ALRR genotype to analyse the risk of detecting an AS case in a flock homogenous for this genotype.

Results

Genotypes most at risk for AS were those including an AFRQ or ALHQ allele while genotypes including a VLRQ allele were less commonly associated with AS. Compared to ALRQ-ALRQ, the ALRR-ALRR genotype was significantly at risk for AS and was very significantly protective for CS. The prevalence of AS among ALRR-ALRR animals was 0.6‰ and was not different from the prevalence in the general population.

Conclusion

In conclusion, further selection of ALRR-ALRR animals will not result in an overall increase of AS prevalence in the French sheep population although this genotype is clearly susceptible to AS. However the probability of detecting AS cases in flocks participating in genetic breeding programme against CS should be considered.  相似文献   

4.
Xu L  Zhang Z  Zhou X  Yin X  Yang L  Zhao D 《Gene》2011,485(2):102-105
The resistance or susceptibility of sheep to scrapie is associated with polymorphisms of the prion protein gene (PRNP), particularly, single nucleotide polymorphisms (SNPs) in amino acid positions 136, 154 and 171. The prion protein (PrP) gene sequence and the deduced amino acid alignment of prion protein in Tan sheep, a local Chinese sheep breed traditionally raised in Ningxia, northwestern China, were determined and variability of the PrP amino acids sequence was analyzed in this study. The PrP nucleic acids and amino acids sequences of 112 Tan sheep were highly homogenous, although polymorphism of the PrP gene was detected at several sites, particularly codons 106, 154, and 171. The analysis of both sequences revealed that the most predominant allele at codons 136, 154 and 171 in Tan sheep was ARQ, which was known to be associated with high susceptibility to scrapie in sheep. The result suggests that Tan sheep is potentially susceptible to scrapie. Our findings provide valuable information for future breeding projects to scrapie resistance in Tan sheep.  相似文献   

5.
Sheep scrapie is a transmissible spongiform encephalopathy that can be transmitted horizontally. The prion protein gene (PRNP) profoundly influences the susceptibility of sheep to the scrapie agent and the tissue levels and distribution of PrPSc in affected sheep. The purpose of this study was to compare the survival time and PrPSc tissue distribution in sheep with highly resistant and highly susceptible PRNP genotypes after intracranial inoculation of the agent of scrapie. Five sheep each of genotype VRQ/VRQ, VRQ/ARR or ARQ/ARR were inoculated. Sheep were euthanized when clinical signs of scrapie became severe. Clinical signs, microscopic lesions, and western blot profiles were uniform across genotypes and consistent with manifestations of classical scrapie. Mean survival time differences were associated with the 171 polymorphic site with VRQ/VRQ sheep surviving 18 months, whereas VRQ/ARR and ARQ/ARR sheep survived 60 and 56 months, respectively. Labeling of PrPSc by immunohistochemistry revealed similar accumulations in central nervous system tissues regardless of host genotype. Immunoreactivity for PrPSc in lymphoid tissue was consistently abundant in VRQ/VRQ, present but confined to tonsil or retropharyngeal lymph node in 4/5 VRQ/ARR, and totally absent in ARQ/ARR sheep. The results of this study demonstrate the susceptibility of sheep with the ARQ/ARR genotype to scrapie by the intracranial inoculation route with PrPSc accumulation in CNS tissues, but prolonged incubation times and lack of PrPSc in lymphoid tissue.  相似文献   

6.
The susceptibility of sheep to scrapie is influenced mainly by the prion protein polymorphisms A136V, R154H, and Q171R/H. Here we analyzed the ability of protein misfolding cyclic amplification (PMCA) to model the genetic susceptibility of sheep to scrapie. For this purpose, we studied the efficiency of brain homogenates from sheep with different PrP genotypes to support PrPSc amplification by PMCA using an ARQ/ARQ scrapie inoculum. The results were then compared with those obtained in vivo using the same sheep breed, genotypes, and scrapie inoculum. Genotypes associated with susceptibility (ARQ/ARQ, ARQ/AHQ, and AHQ/ARH) were able to sustain PrPSc amplification in PMCA reactions, while genotypes associated with resistance to scrapie (ARQ/ARR and ARR/ARR) were unable to support the in vitro conversion. The incubation times of the experimental infection were then compared with the in vitro amplification factors. Linear regression analysis showed that the efficiency of in vitro PrPSc amplification of the different genotypes was indeed inversely proportional to their incubation times. Finally, the rare ARQK176/ARQK176 genotype, for which no in vivo data are available, was studied by PMCA. No amplification was obtained, suggesting ARQK176/ARQK176 as an additional genotype associated with resistance, at least to the isolate tested. Our results indicate a direct correlation between the ability of different PrP genotypes to undergo PrPC-to-PrPSc conversion by PMCA and their in vivo susceptibility and point to PMCA as an alternative to transmission studies and a potential tool to test the susceptibility of numerous sheep PrP genotypes to a variety of prion sources.  相似文献   

7.
Scrapie, a fatal transmissible spongiform encephalopathy (TSE) occurs in two phenotypes: classical and atypical. Many authors point out that the polymorphism of three codons (136, 154, 171) of the PRNP (PrP gene) is associated with a sheep susceptibility to classical scrapie. Until now, only one PRNP gene variant coding phenylalanine at codon 141 has been found to be associated with atypical scrapie. Another recently identified and interesting candidate gene for scrapie susceptibility in sheep is an SPRN gene coding for Shadoo protein (Sho). Sho is a highly interspecies conserved protein and an insertion/deletion (indel) found in a sheep Sho gene was associated with classical scrapie occurrence. Here we determined the polymorphism of PRNP and SPRN genes in nine atypical scrapie cases (six in native born sheep and three in imported sheep) and compared these results with a control group of healthy animals comprising six corresponding Polish sheep breeds. In atypical scrapie cases five PRNP diplotypes were identified: A136R154Q171/ARQ, AHQ/ARQ, ARR/ARQ, ARR/AHQ and AHQ/AHQ. The ARR/AHQ diplotype was found only in imported sheep. A previously unobserved SNP in PRNP (E224K) was also found in both atypical scrapie and in a few control animals. In the ORF of the SPRN gene, six SNPs and one indel were identified. None of these variations was exclusive for scrapie animals and they were probably, naturally occurring polymorphisms. Special attention was given to the 6-bp indel SPRN polymorphism which was previously associated with classical scrapie occurrence.  相似文献   

8.

Background

The cellular prion protein PrPC is encoded by the Prnp gene. This protein is expressed in the central nervous system (CNS) and serves as a precursor to the misfolded PrPSc isoform in prion diseases. The prototype prion disease is scrapie in sheep, and whereas Prnp exhibits common missense polymorphisms for V136A, R154H and Q171R in ovine populations, genetic variation in mouse Prnp is limited. Recently the CNS glycoprotein Shadoo (Sho) has been shown to resemble PrPC both in a central hydrophobic domain and in activity in a toxicity assay performed in cerebellar neurons. Sho protein levels are reduced in prion infections in rodents. Prompted by these properties of the Sho protein we investigated the extent of natural variation in SPRN.

Principal Findings

Paralleling the case for ovine versus human and murine PRNP, we failed to detect significant coding polymorphisms that alter the mature Sho protein in a sample of neurologically normal humans, or in diverse strains of mice. However, ovine SPRN exhibited 4 missense mutations and expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats R1-R5 encoding Sho''s hydrophobic domain. A Val71Ala polymorphism and polymorphic expansion of wt 67(Ala)3Gly70 to 67(Ala)5Gly72 reached frequencies of 20%, with other alleles including Δ67–70 and a 67(Ala)6Gly73 expansion. Sheep V71, A71, Δ67–70 and 67(Ala)6Gly73 SPRN alleles encoded proteins with similar stability and posttranslational processing in transfected neuroblastoma cells.

Significance

Frequent coding polymorphisms are a hallmark of the sheep PRNP gene and our data indicate a similar situation applies to ovine SPRN. Whether a common selection pressure balances diversity at both loci remains to be established.  相似文献   

9.

Background

The risk of scrapie infection increases with increased duration and proximity of contact between sheep at lambing. Scrapie infectivity has not been detected in milk but cellular prion protein, the precursor of disease-associated prion protein PrPd, has been found in milk from ruminants. To determine whether milk is able to transmit scrapie, 18 lambs with a prion protein genotype associated with high susceptibility to scrapie (VRQ/VRQ) were fed milk from twelve scrapie-affected ewes of the same genotype, and 15 VRQ/VRQ sheep reared on scrapie-free dams served as controls.

Results

Three lambs fed milk from scrapie-affected ewes were culled due to intercurrent diseases at 43, 44 and 105 days of age respectively, and PrPd was detected in the distal ileum of the first two lambs, whilst PrPd was not found in lymphoreticular tissues in the third lamb. A control lamb, housed in a separate pen and culled at 38 days of age, was also negative for PrPd in a range of tissues. Samples of recto-anal mucosa associated lymphoid tissue collected from the remaining 15 live lambs at seven months of age (between five to seven months after mixing) were positive for PrPd in the scrapie milk recipients, whereas PrPd was not detected in the remaining 14 controls at that time. A subsequent sample collected from control lambs revealed PrPd accumulation in two of five lambs eight months after mixing with scrapie milk recipients suggestive of an early stage of infection via lateral transmission. By contrast, the control sheep housed in the same building but not mixed with the scrapie milk recipients were still negative for PrPd.

Conclusion

The presence of PrPd in distal ileum and rectal mucosa indicates transmission of scrapie from ewe to lamb via milk (or colostrum) although it is not yet clear if such cases would go on to develop clinical disease. The high level of infection in scrapie-milk recipients revealed by rectal mucosal testing at approximately seven months of age may be enhanced or supplemented by intra-recipient infection as these lambs were mixed together after feeding with milk from scrapie-affected ewes and we also observed lateral transmission from these animals to lambs weaned from scrapie-free ewes.
  相似文献   

10.
Sheep are natural hosts of the prion disease, scrapie. They are also susceptible to experimental challenge with various scrapie strains and with bovine spongiform encephalopathy (BSE), which affects cattle and has been accidentally transmitted to a range of other species, including man. Incidence and incubation period of clinical disease in sheep following inoculation is controlled by the PRNP gene, which has different alleles defined on the basis of polymorphisms, particularly at codons 136, 154 and 171, although other codons are associated with survival time, and the exact responses of the sheep may be influenced by other breed-related differences. Here we report the results of a long term single study of experimental scrapie and BSE susceptibility of sheep of Cheviot, Poll Dorset and Suffolk breeds, originating from New Zealand and of a wide range of susceptible and resistant PRNP genotypes. Responses were compared with those of sheep from a closed Cheviot flock of UK origin (Roslin Cheviot flock). The unusually long observation period (6–8 years for most, but up to 12 years for others) allows us to draw robust conclusions about rates of survival of animals previously regarded as resistant to infection, particularly PRNP heterozygotes, and is the most comprehensive such study reported to date. BSE inoculation by an intracerebral route produced disease in all genotype groups with differing incubation periods, although M112T and L141F polymorphisms seemed to give some protection. Scrapie isolate SSBP/1, which has the shortest incubation period in sheep with at least one VRQ PRNP allele, also produced disease following sub-cutaneous inoculation in ARQ/ARQ animals of New Zealand origin, but ARQ/ARQ sheep from the Roslin flock survived the challenge. Our results demonstrate that the links between PRNP genotype and clinical prion disease in sheep are much less secure than previously thought, and may break down when, for example, a different breed of sheep is moved into a new flock.  相似文献   

11.
A rapid method to determine the allelic variants of the sheep PrP gene was developed. DNA samples from 128 Suffolk sheep (39 rams and 89 ewes) were screened by using polymerase chain reactions and dot-blot hybridization with 32P-labeled nine allele-specific oligonucleotide probes corresponding to the polymorphic PrP codons 112, 136, 154 and 171. Three allelic variants of the PrP gene, PrPMARQ, PrPTARQ and PrPMARR, were found in the flocks. Among those variants, nearly half of the ewes had alleles of the 171-Arg variant that is closely associated with resistance to natural scrapie. Assessments of allelic mutations of the PrP gene may help to select the scrapie-resistant progenitors in the flocks.  相似文献   

12.
Chen X  He SG  Liu MJ 《遗传》2010,32(11):1159-1165
绵羊痒病是一种渐进性和致死性中枢神经系统疾病,绵羊朊蛋白基因(Prion protein gene,PRNP)多态性与痒病的易感或抗性有关,其中PRNP136位(V/A)、154位(H/R)和171位(H/Q/R)的基因多态性与该病发生最相关。为评价新疆地区主要绵羊品种对痒病的易感性,文章对新疆地区10个绵羊品种(阿勒泰、巴士拜、巴音布鲁克、多浪、和田、策勒黑、中国美利奴、德国肉用美利奴、特克赛尔和萨福克羊)共746只个体PRNP基因的136位(V/A)、154位(H/R)和171位(H/Q/R)的遗传多态性进行分析,检测到了ARQ、ARR、ARH、ARK、VRQ、AHR、AHQ、AHH8种等位基因,其中ARQ和ARR等位基因存在于所有品种中,且ARQ在所有品种中的基因频率最高。ARH存在于除萨福克和德国肉用美利奴羊外的8个绵羊品种中。仅在新疆地方品种阿勒泰、巴音布鲁克、巴士拜和多浪羊中检测到ARK等位基因。而VRQ、AHR、AHQ和AHH4种等位基因只在中国美利奴羊上存在,且频率极低。在10个品种中共检测到了ARQ/ARQ、ARQ/ARK、ARR/ARR、ARH/ARH、ARQ/ARR、ARH/ARQ、ARH/ARR、ARK/ARK、ARH/ARK、ARQ/VRQ、ARQ/AHQ、ARQ/AHR和ARH/AHH13种基因型,其中中度易感的ARQ/ARQ基因型频率最高,而抗性最强的ARR/ARR基因型仅存在于巴音布鲁克、策勒黑、中国美利奴、特克赛尔和德国肉用美利奴羊,且频率较低。文章首次在中国美利奴羊上发现了易感性很强的VRQ/ARQ基因型。上述结果提示新疆的主要绵羊品种对痒病的抗性较弱。  相似文献   

13.

Background

Prions, infectious agents associated with prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE) in cattle, and scrapie in sheep and goats, are primarily comprised of PrPSc, a protease-resistant misfolded isoform of the cellular prion protein PrPC. Protein misfolding cyclic amplification (PMCA) is a highly sensitive technique used to detect minute amounts of scrapie PrPSc. However, the current PMCA technique has been unsuccessful in achieving good amplification in cattle. The detailed distribution of PrPSc in BSE-affected cattle therefore remains unknown.

Methodology/Principal Findings

We report here that PrPSc derived from BSE-affected cattle can be amplified ultra-efficiently by PMCA in the presence of sulfated dextran compounds. This method is capable of amplifying very small amounts of PrPSc from the saliva, palatine tonsils, lymph nodes, ileocecal region, and muscular tissues of BSE-affected cattle. Individual differences in the distribution of PrPSc in spleen and cerebrospinal fluid samples were observed in terminal-stage animals. However, the presence of PrPSc in blood was not substantiated in the BSE-affected cattle examined.

Conclusions/Significance

The distribution of PrPSc is not restricted to the nervous system and can spread to peripheral tissues in the terminal disease stage. The finding that PrPSc could be amplified in the saliva of an asymptomatic animal suggests a potential usefulness of this technique for BSE diagnosis. This highly sensitive method also has other practical applications, including safety evaluation or safety assurance of products and byproducts manufactured from bovine source materials.  相似文献   

14.

Background

Transmissible agents involved in prion diseases differ in their capacities to target different regions of the central nervous system and lymphoid tissues, which are also host-dependent.

Methodology/Principal Findings

Protease-resistant prion protein (PrPres) was analysed by Western blot in the spleen of transgenic mice (TgOvPrP4) that express the ovine prion protein under the control of the neuron-specific enolase promoter, after infection by intra-cerebral route with a variety of transmissible spongiform encephalopathies (TSEs) from cattle and small ruminants. Splenic PrPres was consistently detected in classical BSE and in most natural scrapie sources, the electrophoretic pattern showing similar features to that of cerebral PrPres. However splenic PrPres was not detected in L-type BSE and TME-in-cattle, or in the CH1641 experimental scrapie isolate, indicating that some TSE strains showed reduced splenotropism in the ovine transgenic mice. In contrast with CH1641, PrPres was also consistently detected in the spleen of mice infected with six natural “CH1641-like” scrapie isolates, but then showed clearly different molecular features from those identified in the brains (unglycosylated PrPres at ∼18 kDa with removal of the 12B2 epitope) of ovine transgenic mice or of sheep. These features included different cleavage of the main PrPres cleavage product (unglycosylated PrPres at ∼19 kDa with preservation of the 12B2 epitope) and absence of the additional C-terminally cleaved PrPres product (unglycosylated form at ∼14 kDa) that was detected in the brain.

Conclusion/Significance

Studies in a transgenic mouse model expressing the sheep prion protein revealed different capacities of ruminant prions to propagate in the spleen. They showed unexpected features in “CH1641-like” ovine scrapie suggesting that such isolates contain mixed conformers with distinct capacities to propagate in the brain or lymphoid tissues of these mice.  相似文献   

15.

Background

Feral sheep are considered to be a source of genetic variation that has been lost from their domestic counterparts through selection.

Methods

This study investigates variation in the genes KRTAP1-1, KRT33, ADRB3 and DQA2 in Merino-like feral sheep populations from New Zealand and its offshore islands. These genes have previously been shown to influence wool, lamb survival and animal health.

Results

All the genes were polymorphic, but no new allele was identified in the feral populations. In some of these populations, allele frequencies differed from those observed in commercial Merino sheep and other breeds found in New Zealand. Heterozygosity levels were comparable to those observed in other studies on feral sheep. Our results suggest that some of the feral populations may have been either inbred or outbred over the duration of their apparent isolation.

Conclusion

The variation described here allows us to draw some conclusions about the likely genetic origin of the populations and selective pressures that may have acted upon them, but they do not appear to be a source of new genetic material, at least for these four genes.  相似文献   

16.

Background

Cellular prion protein expression is essential for the development of transmissible spongiform encephalopathies (TSEs), and in sheep, genetic susceptibility to scrapie has been associated to PrP gene polymorphisms. To test the hypothetical linkage between PrP gene expression and genetic susceptibility, PrP mRNA levels were measured by real-time RT-PCR in six ovine tissues of animals with different genotypes.

Results

Previous to the PrP gene expression analysis the stability of several housekeeping (HK) genes was assessed in order to select the best ones for relative quantification. The normalisation of gene expression was carried out using a minimum of three HK genes in order to detect small expression differences more accurately than using a single control gene. The expression stability analysis of six HK genes showed a large tissue-associated variation reflecting the existence of tissue-specific factors. Thereby, a specific set of HK genes was required for an accurate normalisation of the PrP gene expression within each tissue. Statistical differences in the normalised PrP mRNA levels were found among the tissues, obtaining the highest expression level in obex, followed by ileum, lymph node, spleen, cerebellum and cerebrum. A tendency towards increased PrP mRNA levels and genetic susceptibility was observed in central nervous system. However, the results did not support the hypothesis that PrP mRNA levels vary between genotypes.

Conclusion

The results on PrP gene expression presented here provide valuable baseline data for future studies on scrapie pathogenesis. On the other hand, the results on stability data of several HK genes reported in this study could prove very useful in other gene expression studies carried out in these relevant ovine tissues.
  相似文献   

17.
The susceptibility of sheep to classical scrapie and bovine spongiform encephalopathy (BSE) is mainly influenced by prion protein (PrP) polymorphisms A136V, R154H, and Q171R, with the ARR allele associated with significantly decreased susceptibility. Here we report the protective effect of the amino acid substitution M137T, I142K, or N176K on the ARQ allele in sheep experimentally challenged with either scrapie or BSE. Such observations suggest the existence of additional PrP alleles that significantly decrease the susceptibility of sheep to transmissible spongiform encephalopathies, which may have important implications for disease eradication strategies.  相似文献   

18.
Variation in the ovine prion protein amino acid sequence influences scrapie progression, with sheep homozygous for A(136)R(154)Q(171) considered susceptible. This study examined the association of survival time of scrapie-exposed ARQ sheep with variation elsewhere in the ovine prion gene. Four single nucleotide polymorphism alleles were associated with prolonged survival. One nonsynonymous allele (T112) was associated with an additional 687 days of survival for scrapie-exposed sheep compared to M112 sheep (odds ratio, 42.5; P = 0.00014). The only two sheep homozygous for T112 (TARQ) did not develop scrapie, suggesting that the allelic effect may be additive. These results provide evidence that TARQ sheep are genetically resistant to development of classical scrapie.  相似文献   

19.

Background

In prion disease, the peripheral expression of PrPC is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrPSc accumulation, localisation of nerve fibres and PrPC expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep.

Methodology/Principal Findings

Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrPC and PrPSc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrPSc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrPSc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrPSc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrPSc-laden germinal centres. However, the close association between nerves and PrPSc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres.

Conclusions/Significance

The findings suggest that the degree of PrPSc accumulation does not depend on the expression level of PrPC. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrPSc.  相似文献   

20.
Scrapie, an invariably fatal disease of sheep and goats, is a transmissible spongiform encephalopathy (TSE). The putative infectious agent is the host-encoded prion protein, PrP. The development of scrapie is closely linked to polymorphisms in the host PrP gene. The pathogenesis of most TSEs involves conversion of normal, cellular PrP into a protease-resistant, pathogenic isoform called PrPSc. The conversion to PrPSc involves change in secondary structure; it is impacts on these structural changes that may link polymorphisms to disease. Within the structured C-terminal part of PrP polymorphisms have been reported at 15 and 10 codons of the sheep and goat PrP genes respectively. Three polymorphisms in sheep are acutely linked to the occurrence of scrapie: A136V, R154H and Q171R/H. These generate five commonly observed alleles: ARQ, ARR, AHQ, ARH and VRQ. ARR and AHQ are associated with resistance; ARQ, ARH and VRQ are associated with susceptibility. There are subtle effects of specific allele pairings (genotypes). Generally, more susceptible genotypes have younger ages at death from scrapie. Different strains of scrapie occur which may attack genotypes differently. Different sheep breeds vary in the assortment of the five alleles that they predominantly encode. The reason for this variation is not known. Furthermore, certain genotypes may be susceptible to scrapie in some breeds and resistant in others. The explanation is not known, but may relate to different scrapie strains circulating in different breeds, or there may be effects of other genes which modulate the effect of PrP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号