首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Understanding phylogenetic relationships within species complexes of disease vectors is crucial for identifying genomic changes associated with the evolution of epidemiologically important traits. However, the high degree of genetic similarity among sibling species confounds the ability to determine phylogenetic relationships using molecular markers. The goal of this study was to infer the ancestral–descendant relationships among malaria vectors and nonvectors of the Anopheles gambiae species complex by analyzing breakpoints of fixed chromosomal inversions in ingroup and several outgroup species. We identified genes at breakpoints of fixed overlapping chromosomal inversions 2Ro and 2Rp of An. merus using fluorescence in situ hybridization, a whole-genome mate-paired sequencing, and clone sequencing. We also mapped breakpoints of a chromosomal inversion 2La (common to An. merus, An. gambiae, and An. arabiensis) in outgroup species using a bioinformatics approach. We demonstrated that the “standard” 2R+p arrangement and “inverted” 2Ro and 2La arrangements are present in outgroup species Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The data indicate that the ancestral species of the An. gambiae complex had the 2Ro, 2R+p, and 2La chromosomal arrangements. The “inverted” 2Ro arrangement uniquely characterizes a malaria vector An. merus as the basal species in the complex. The rooted chromosomal phylogeny implies that An. merus acquired the 2Rp inversion and that its sister species An. gambiae acquired the 2R+o inversion from the ancestral species. The karyotype of nonvectors An. quadriannulatus A and B was derived from the karyotype of the major malaria vector An. gambiae. We conclude that the ability to effectively transmit human malaria had originated repeatedly in the complex. Our findings also suggest that saltwater tolerance originated first in An. merus and then independently in An. melas. The new chromosomal phylogeny will facilitate identifying the association of evolutionary genomic changes with epidemiologically important phenotypes.  相似文献   

3.
4.

Introduction

High malaria transmission heterogeneity in an urban environment is basically due to the complex distribution of Anopheles larval habitats, sources of vectors. Understanding 1) the meteorological and ecological factors associated with differential larvae spatio-temporal distribution and 2) the vectors dynamic, both may lead to improving malaria control measures with remote sensing and high resolution data as key components. In this study a robust operational methodology for entomological malaria predictive risk maps in urban settings is developed.

Methods

The Tele-epidemiology approach, i.e., 1) intensive ground measurements (Anopheles larval habitats and Human Biting Rate, or HBR), 2) selection of the most appropriate satellite data (for mapping and extracting environmental and meteorological information), and 3) use of statistical models taking into account the spatio-temporal data variability has been applied in Dakar, Senegal.

Results

First step was to detect all water bodies in Dakar. Secondly, environmental and meteorological conditions in the vicinity of water bodies favoring the presence of Anopheles gambiae s.l. larvae were added. Then relationship between the predicted larval production and the field measured HBR was identified, in order to generate An. gambiae s.l. HBR high resolution maps (daily, 10-m pixel in space).

Discussion and Conclusion

A robust operational methodology for dynamic entomological malaria predictive risk maps in an urban setting includes spatio-temporal variability of An. gambiae s.l. larval habitats and An. gambiae s.l. HBR. The resulting risk maps are first examples of high resolution products which can be included in an operational warning and targeting system for the implementation of vector control measures.  相似文献   

5.

Introduction

High coverage of conventional and long-lasting insecticide treated nets (ITNs and LLINs) in parts of E Africa are associated with reductions in local malaria burdens. Shifts in malaria vector species ratio have coincided with the scale-up suggesting that some species are being controlled by ITNs/LLINs better than others.

Methods

Between 2005–2006 six experimental hut trials of ITNs and LLINs were conducted in parallel at two field stations in northeastern Tanzania; the first station was in Lower Moshi Rice Irrigation Zone, an area where An. arabiensis predominates, and the second was in coastal Muheza, where An. gambiae and An. funestus predominate. Five pyrethroids and one carbamate insecticide were evaluated on nets in terms of insecticide-induced mortality, blood-feeding inhibition and exiting rates.

Results

In the experimental hut trials mortality of An. arabiensis was consistently lower than that of An. gambiae and An. funestus. The mortality rates in trials with pyrethroid-treated nets ranged from 25–52% for An. arabiensis, 63–88% for An. gambiae s.s. and 53–78% for An. funestus. All pyrethroid-treated nets provided considerable protection for the occupants, despite being deliberately holed, with blood-feeding inhibition (percentage reduction in biting rates) being consistent between species. Veranda exiting rates did not differ between species. Percentage mortality of mosquitoes tested in cone bioassays on netting was similar for An. gambiae and An. arabiensis.

Conclusions

LLINs and ITNs treated with pyrethroids were more effective at killing An. gambiae and An. funestus than An. arabiensis. This could be a major contributing factor to the species shifts observed in East Africa following scale up of LLINs. With continued expansion of LLIN coverage in Africa An. arabiensis is likely to remain responsible for residual malaria transmission, and species shifts might be reported over larger areas. Supplementary control measures to LLINs may be necessary to control this vector species.  相似文献   

6.
7.
C Liu  MG Mauk  R Hart  M Bonizzoni  G Yan  HH Bau 《PloS one》2012,7(8):e42222

Background

Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30–40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission.

Methodology/Principal Findings

An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark.

Conclusions/Significance

The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.  相似文献   

8.

Background

An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus.

Methods

Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin.

Results

The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed.

Conclusion

This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations.  相似文献   

9.

Background

Long Lasting Insecticidal Nets (LLIN) and Indoor Residual Spraying (IRS) have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL) is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia.

Methods

Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n = 2027) and cone (n = 580) bioassays in houses treated with DL or IRS. A sample of mosquitoes (n = 169) were identified to species/molecular form and screened for the presence of knock down resistance (kdr) alleles associated with pyrethroid resistance.

Results

Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5%) although this mutation alone cannot explain the resistance levels observed.

Conclusion

High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors, evaluate the effectiveness of existing interventions and develop appropriate resistance management strategies.  相似文献   

10.

Background

The siRNA and piRNA pathways have been shown in insects to be essential for regulation of gene expression and defence against exogenous and endogenous genetic elements (viruses and transposable elements). The vast majority of endogenous small RNAs produced by the siRNA and piRNA pathways originate from repetitive or transposable elements (TE). In D. melanogaster, TE-derived endogenous siRNAs and piRNAs are involved in genome surveillance and maintenance of genome integrity. In the medically relevant malaria mosquito Anopheles gambiae TEs constitute 12-16% of the genome size. Genetic variations induced by TE activities are known to shape the genome landscape and to alter the fitness in An. gambiae.

Results

Here, using bioinformatics approaches we analyzed the small RNA data sets from 6 libraries formally reported in a previous study and examined the expression of the mixed germline/somatic siRNAs and piRNAs produced in adult An. gambiae females. We characterized a large population of TE-derived endogenous siRNAs and piRNAs, which constitutes 56-60% of the total siRNA and piRNA reads in the analysed libraries. Moreover, we identified a number of protein coding genes producing gene-specific siRNAs and piRNAs that were generally expressed at much lower levels than the TE-associated small RNAs. Detailed sequence analysis revealed that An. gambiae piRNAs were produced by both “ping-pong” dependent (TE-associated piRNAs) and independent mechanisms (genic piRNAs). Similarly to D. melanogaster, more than 90% of the detected piRNAs were produced from TE-associated clusters in An. gambiae. We also found that biotic stress as blood feeding and infection with Plasmodium parasite, the etiological agent of malaria, modulated the expression levels of the endogenous siRNAs and piRNAs in An. gambiae.

Conclusions

We identified a large and diverse set of the endogenously derived siRNAs and piRNAs that share common and distinct aspects of small RNA expression across insect species, and inferred their impact on TE and gene activity in An. gambiae. The TE-specific small RNAs produced by both the siRNA and piRNA pathways represent an important aspect of genome stability and genetic variation, which might have a strong impact on the evolution of the genome and vector competence in the malaria mosquitoes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1436-1) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Malaria is a major public health problem in Cameroon. Unlike in the southern forested areas where the epidemiology of malaria has been better studied prior to the implementation of control activities, little is known about the distribution and role of anophelines in malaria transmission in the coastal areas.

Methods

A 12-month longitudinal entomological survey was conducted in Tiko, Limbe and Idenau from August 2001 to July 2002. Mosquitoes captured indoors on human volunteers were identified morphologically. Species of the Anopheles gambiae complex were identified using the polymerase chain reaction (PCR). Mosquito infectivity was detected by the enzyme-linked immunosorbent assay and PCR. Malariometric indices (plasmodic index, gametocytic index, parasite species prevalence) were determined in three age groups (<5 yrs, 5–15 yrs, >15 yrs) and followed-up once every three months.

Results

In all, 2,773 malaria vectors comprising Anopheles gambiae (78.2%), Anopheles funestus (17.4%) and Anopheles nili (7.4%) were captured. Anopheles melas was not anthropophagic. Anopheles gambiae had the highest infection rates. There were 287, 160 and 149 infective bites/person/year in Tiko, Limbe and Idenau, respectively. Anopheles gambiae accounted for 72.7%, An. funestus for 23% and An. nili for 4.3% of the transmission. The prevalence of malaria parasitaemia was 41.5% in children <5 years of age, 31.5% in those 5–15 years and 10.5% in those >15 years, and Plasmodium falciparum was the predominant parasite species.

Conclusion

Malaria transmission is perennial, rainfall dependent and An. melas does not contribute to transmission. These findings are important in the planning and implementation of malaria control activities in coastal Cameroon and West Africa.
  相似文献   

12.

Background

Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids.

Methodology/Principal Findings

We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures.

Conclusion

These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors.  相似文献   

13.

Background

Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN) in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF), an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen.

Method

The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone) and a LN with pyriproxyfen alone (PPF LN). Laboratory tunnel tests were performed to substantiate the findings in the experimental huts.

Results

Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01). Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001). The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets.

Conclusion

Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and management of pyrethroid resistant vectors by preventing further selection of pyrethroid resistant phenotypes.  相似文献   

14.

Background

The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification.

Methods

To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested.

Results

Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species.

Conclusions

We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys.  相似文献   

15.

Background

Mosquito Larval Source Management (LSM) could be a valuable additional tool for integrated malaria vector control especially in areas with focal transmission like the highlands of western Kenya if it were not for the need to target all potential habitats at frequent intervals. The ability to determine the productivity of malaria vectors from identified habitats might be used to target LSM only at productive ones.

Methods

Each aquatic habitat within three highland sites in western Kenya was classified as natural swamp, cultivated swamp, river fringe, puddle, open drain or burrow pit. Three habitats of each type were selected in each site in order to study the weekly productivity of adult malaria vectors from February to May 2009 using a sweep-net and their habitat characteristics recorded.

Results

All surveyed habitat types produced adult malaria vectors. Mean adult productivity of Anopheles gambiae sensu lato in puddles (1.8/m2) was 11–900 times higher than in the other habitat types. However, puddles were the most unstable habitats having water at 43% of all sampling occasions and accounted for 5% of all habitats mapped in the study areas whereas open drains accounted for 72%. Densities of anopheline late instars larvae significantly increased with the presence of a biofilm but decreased with increasing surface area or when water was flowing. Taking stability and frequency of the habitat into account, puddles were still the most productive habitat types for malaria vectors but closely followed by open drains.

Conclusion

Even though productivity of An. gambiae s.l. was greatest in small and unstable habitats, estimation of their overall productivity in an area needs to consider the more stable habitats over time and their surface extension. Therefore, targeting only the highly productive habitats is unlikely to provide sufficient reduction in malaria vector densities.  相似文献   

16.
Abstract. Identification of species within the Anopheles gambiae Giles species complex is essential for the correct evaluation of malaria vector ecology studies and control programmes. The development of DNA probes to distinguish species of the An.gambiae complex is described. Genomic libraries were prepared for four members of the An.gambiae complex. These were screened using radiolabeled DNA from different species of An. gambiae sensu lato and a number of clones selected on the basis of their species specificity. These clones could be divided into two groups, each containing homologous sequences. Sequences homologous to group 1 inserts are highly reiterated in the genomes of Anopheles arabiensis Patton and Anopheles merus Dönitz, present in low copy number in Anopheles melas Theobald, but were not detected in Anopheles gambiae sensu stricto. Studies on the organization of this sequence in the genome of An.arabiensis show that homologous sequences are male specific and interspersed within the chromatin. Sequences homologous to group 2 inserts are highly repeated in the genomes of An.merus and An.melas, but present in low copy number in An.gambiae s.s. and An.arabiensis. Group 2 homologous sequences are not sex-specific in the species tested and appear to be tandemly repeated. When used as hybridization probes, these sequences provide a sensitive means for the identification of species within the Anopheles gambiae complex.  相似文献   

17.

Background

The question of sampling and spatial aggregation of malaria vectors is central to vector control efforts and estimates of transmission. Spatial patterns of anopheline populations are complex because mosquitoes'' habitats and behaviors are strongly heterogeneous. Analyses of spatially referenced counts provide a powerful approach to delineate complex distribution patterns, and contributions of these methods in the study and control of malaria vectors must be carefully evaluated.

Methodology/Principal Findings

We used correlograms, directional variograms, Local Indicators of Spatial Association (LISA) and the Spatial Analysis by Distance IndicEs (SADIE) to examine spatial patterns of Indoor Resting Densities (IRD) in two dominant malaria vectors sampled with a 5×5 km grid over a 2500 km2 area in the forest domain of Cameroon. SADIE analyses revealed that the distribution of Anopheles gambiae was different from regular or random, whereas there was no evidence of spatial pattern in Anopheles funestus (Ia = 1.644, Pa<0.05 and Ia = 1.464, Pa>0.05, respectively). Correlograms and variograms showed significant spatial autocorrelations at small distance lags, and indicated the presence of large clusters of similar values of abundance in An. gambiae while An. funestus was characterized by smaller clusters. The examination of spatial patterns at a finer spatial scale with SADIE and LISA identified several patches of higher than average IRD (hot spots) and clusters of lower than average IRD (cold spots) for the two species. Significant changes occurred in the overall spatial pattern, spatial trends and clusters when IRDs were aggregated at the house level rather than the locality level. All spatial analyses unveiled scale-dependent patterns that could not be identified by traditional aggregation indices.

Conclusions/Significance

Our study illustrates the importance of spatial analyses in unraveling the complex spatial patterns of malaria vectors, and highlights the potential contributions of these methods in malaria control.  相似文献   

18.

Background

Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.

Methods

Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates.

Results

Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR?=?0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010.

Conclusion

Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.  相似文献   

19.

Background

Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases.

Methodology

The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania. The benefit of screening different entry points (eaves, windows and doors) using PVC-coated fibre glass netting material in terms of reduced indoor densities of mosquitoes was evaluated compared to the control.

Findings

23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of Anopheles gambiae s. l. (Relative ratio (RR)  = 0.91; 95% CI = 0.84, 0.98; P = 0.01); Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P<0.001) and Mansonia uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P<0.001) but not Culex quinquefasciatus, Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening windows and doors but this was not significant.

Significance

This study confirms that across Africa, screening eaves protects households against important mosquito vectors of filariasis, Rift Valley Fever and O''Nyong nyong as well as malaria. While full house screening is required to exclude Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable potential for integrated control of other vectors of filariasis, arbovirus and malaria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号