首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
端粒酶与癌症靶向治疗   总被引:1,自引:0,他引:1  
傅青岭  刘厚奇 《生命科学》2010,(12):1254-1258
端粒酶是癌组织中特异表达的关键酶,与肿瘤细胞无限增殖关系密切。端粒酶在癌细胞表面表达特异性抗原,是癌细胞的标记之一。靶向治疗作为癌症新兴的治疗方法,具有特异性强、副作用小等传统方法所不具有的优点。针对端粒酶这一特异靶点的靶向治疗可以利用免疫学基本原理,通过抗原的特异性识别有效杀伤癌细胞。已有许多端粒酶肽段应用于实验室及临床研究,具有广阔的应用前景;但应用免疫疗法也有其缺陷,端粒酶抗原免疫耐受的问题也是亟待解决的问题之一,在临床上的广泛应用还有一段路要走。  相似文献   

2.
目的:探讨组蛋白去乙酰化酶抑制剂曲古霉素A(TSA)对人膀胱癌T24细胞周期和凋亡的影响。方法:以不同剂量TSA(0.1μM,0.3μM和1μM)处理T24细胞。采用MTT法检测细胞存活率,AnnexinV-PI染色检测细胞凋亡,流式细胞仪检测caspase-3活性,Western blot法检测P21蛋白表达。结果:TSA剂量依赖性降低膀胱癌细胞存活率,促进细胞凋亡,表现为AnnexinV阳性细胞明显增多,同时活化的caspase-3水平增高。TSA还可通过诱导膀胱癌细胞周期阻滞于G2/M期抑制细胞生长,且呈剂量依赖性。结论:TSA通过促进caspase-3激活诱导膀胱癌细胞凋亡,同时诱导细胞阻滞于G2/M期。  相似文献   

3.
4.
The expression of N‐cadherin, characteristic of various cancers, very often leads to changes in the cells' adhesive properties. Thus, we sought to find out if N‐cadherin expressed in various, but cancer‐related cells, differs in its functional properties that could contribute to variations in cells' phenotypes. In our work, measurements of an unbinding force of a single N‐cadherin molecule, probed with the same antibody both on a surface of living non‐malignant (HCV29) and malignant cells (T24) of bladder cancer, were carried out with the use of an atomic force microscopy. The results show the enhanced N‐cadherin level in T24 malignant cells (8.7% vs. 3.6% obtained for non‐malignant one), confirmed by the Western blot and the immunohistochemical staining. The effect was accompanied by changes in unbinding properties of an individual N‐cadherin molecule. Lower unbinding force values (26.1 ± 7.1 pN) in non‐malignant cells reveal less stable N‐cadherin complexes, as compared to malignant cells (61.7 ± 14.6 pN). This suggests the cancer‐related changes in a structure of the binding site of the antibody, located at the extracellular domain of N‐cadherin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Fucoxanthin, a natural carotenoid, has been reported to have anti-cancer activity in human colon cancer cells, human prostate cancer cells, human leukemia cells, and human epithelial cervical cancer cells. This study was undertaken to evaluate the molecular mechanisms of fuco- xanthin against human bladder cancer T24 cell line. MTT analysis results showed that 5 and 10 ixM fucoxanthin inhibited the proliferation of T24 cells in a dose- and time- dependent manner accompanied by the growth arrest at Go/G1 phase of cell cycle, which is mediated by the up-regu- lation of p21, a cyclin-dependent kinase (CDK)-inhibitory protein and the down-regulation of CDK-2, CDK-4, cyclin D1, and cyclin E. In addition, 20 and 40 μM fucoxanthin induced apoptosis of T24 cells by the abrogation of morta- lin-p53 complex and the reactivation of nuclear mutant- type p53, which also had tumor suppressor function as wild-type p53. All these results demonstrated that the anti- cancer activity of fucoxanthin on T24 cells was associated with cell cycle arrest at Go/G1 phase by up-regulation of p21 at low doses and apoptosis via decrease in the expres- sion level of mortalin, which is a stress regulator and a mem- ber of heat shock protein 70, followed by up-regulation of cleaved caspase-3 at high doses.  相似文献   

7.
CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.  相似文献   

8.
Telomerase is a ribonucleoprotein that synthesizes telomere repeats onto chromosome ends and is involved in maintaining telomere length in germline tissues and in immortal and cancer cells. In the present study, the temporal regulation of expression of telomerase activity was examined in human germline and somatic tissues and cells during development. Telomerase activity was detected in fetal, newborn, and adult testes and ovaries, but not in mature spermatozoa or oocytes. Blastocysts expressed high levels of telomerase activity as did most human somatic tissues at 16–20 weeks of development with the exception of human brain tissue. This activity could no longer be detected in the somatic tissues examined from the neonatal period onward. Neither placenta nor cultured fetal amniocytes contained detectable telomerase activity. Fetal tissues explanted into primary cell culture showed a dramatic decline in telomerase activity which became undetectable after the first passage in vitro. Elucidation of the regulatory pathways involved in the repression of telomerase activity during development may lead to the ability to manipulate telomerase levels and explore the consequences both for cellular aging and for the survival of cancer cells. © 1996 Wiley-Liss, Inc.  相似文献   

9.
10.
Increasing evidences suggest that circular RNAs (circRNAs) exert crucial functions in regulating gene expression. In this study, we perform RNA‐seq and identify 6,154 distinct circRNAs from human bladder cancer and normal bladder tissues. We find that hundreds of circRNAs are significantly dysregulated in human bladder cancer tissues. We further show that circHIPK3, also named bladder cancer‐related circular RNA‐2 (BCRC‐2), is significantly down‐regulated in bladder cancer tissues and cell lines, and negatively correlates with bladder cancer grade, invasion as well as lymph node metastasis, respectively. Over‐expression of circHIPK3 effectively inhibits migration, invasion, and angiogenesis of bladder cancer cells in vitro and suppresses bladder cancer growth and metastasis in vivo. Mechanistic studies reveal that circHIPK3 contains two critical binding sites for the microRNA miR‐558 and can abundantly sponge miR‐558 to suppress the expression of heparanase (HPSE). Taken together, our findings provide evidence that circRNAs act as “microRNA sponges”, and suggest a new therapeutic target for the treatment of bladder cancer.  相似文献   

11.
Scutellarin, an active component of flavonoid, displays a variety of physiological actions and has been applied for the treatment of diverse diseases including hypertension and cerebral infarction as well as cerebral thrombosis. In recent time, Scutellarin has been demonstrated to possess the anticancer activity. But the biological significance of Scutellarin in bladder cancer (BC) remains to be elucidated. In the current study, we explored the specific effect of Scutellarin on BC progression. We found that Scutellarin inhibited hypoxia-induced BC cell migration and invasion in vitro as well as suppressed hypoxia-induced BC metastasis in vivo. Moreover, Scutellarin significantly reversed hypoxia-promoted epithelial-mesenchymal transition (EMT) in BC cells and the PI3K/Akt and MAPK pathways were implicated in the suppressive effect. Taken together, we suggested the potential value of Scutellarin as a novel anticancer agent for BC treatment.  相似文献   

12.
Background: Bladder cancer is the fourth and tenth most common malignancy in men and women worldwide, respectively. One of the main reasons for the unsatisfactory therapeutic control of bladder cancer is that the molecular biological mechanism of bladder cancer is complex. Gasdermin B (GSDMB) is one member of the gasdermin family and participates in the regulation of cell pyroptosis. The role of GSDMB in bladder cancer has not been studied to date.Methods: TCGA database was used to exam the clinical relevance of GSDMB. Functional assays such as MTT assay, Celigo fluorescent cell-counting assay, Annexin V-APC assay and xenografts were used to evaluate the biological role of GSDMB in bladder cancer. Mass spectrometry and immunoprecipitation were used to detect the protein interaction between GSDMB and STAT3, or GSDMB and USP24. Western blot and immunohistochemistry were used to study the relationship between USP24, GSDMB and STAT3.Results: In this study, bioinformatics analysis indicated that the mRNA expression level of GSDMB in bladder cancer tissues was higher than that in adjacent normal tissues. Then, we showed that GSDMB promoted bladder cancer progression. Furthermore, we demonstrated that GSDMB interacted with STAT3 to increase the phosphorylation of STAT3 and modulate the glucose metabolism and promote tumor growth in bladder cancer cells. Besides, we also showed that USP24 stabilized GSDMB to activate STAT3 signaling, which was blocked by the USP24 inhibitor.Conclusions: We suggested that aberrantly up-regulated GSDMB was responsible for enhancing the growth and invasion ability of bladder cancer cells. Then, we showed that GSDMB could bind to STAT3 and activate STAT3 signaling in bladder cancer. Furthermore, we also demonstrated that USP24 interacted with GSDMB and prevented GSDMB from degradation in bladder cancer cells. Therefore, the USP24/GSDMB/STAT3 axis may be a new targetable signaling pathway for bladder cancer treatment.  相似文献   

13.
目的探讨补骨脂素对人膀胱癌T24细胞存活率、细胞周期、细胞凋亡和迁移的影响及其分子机制。 方法分别用细胞培养液、3‰二甲基亚砜(DMSO)和不同浓度(10、30、50、100 μg/mL)补骨脂素处理膀胱癌细胞分成对照组、DMSO组和补骨脂素组,CCK-8检测细胞存活率。流式细胞术检测细胞周期和细胞凋亡。划痕实验检测划痕愈合率。RT-qPCR法检测磷脂酰肌醇3激酶(PI3K)和蛋白激酶B (AKT) mRNA表达水平、Western blot法检测PI3K和AKT蛋白的表达及磷酸化情况。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。 结果与DMSO组比较,除10 μg/mL补骨脂素作用24 h外,其余浓度补骨脂素作用不同时间的细胞存活率随着补骨脂素浓度增高、作用时间延长而逐渐降低(P < 0.05)。与DMSO组比较,30、100 μg/mL补骨脂素干预24 h后,G1期细胞比例增多,G2/M期比例减少,细胞凋亡率[(9.16±0.97)%、(15.45±1.57)%比(1.02±0.36)%]升高,划痕愈合率[24 h:(45.00±3.44)%、(27.60±2.21)%比(66.10±2.61)%,48 h:(70.00 ± 3.40)%、(45.17±2.44)%比(85.17±3.85)%]降低,PI3K、AKT mRNA表达以及PI3K、AKT蛋白表达水平和磷酸化水平均降低(P均< 0.05)。 结论补骨脂素降低膀胱癌细胞存活率、阻滞细胞周期、诱导细胞凋亡和抑制细胞迁移,其机制可能与下调PI3K、AKT mRNA、蛋白表达及磷酸化水平有关。  相似文献   

14.
Telomerase is associated with cell proliferation capacity, protection and stabilization of chromosomes. TA (telomerase activity) can be detected in highly replicative cells, e.g. stem and cancer cells. Most available mESC (mouse embryonic stem cell) research is done with a few cell lines. The purpose of this study has been to evaluate the TA in different passages of newly isolated mESC. TRAP (Telomeric Repeat Amplification Protocol)-ELISA method was used in a semi-quantitative evaluation of TA. Three mESC lineages were investigated (CT2, CT3 and CT4) at three different passages (P13, P15 and P19). In contrast with previous studies, these mESC lines did not show the same TA throughout their passages, having initially low TA values, followed by a subsequent rise and stabilization.  相似文献   

15.
Increased miR‐222 levels are associated with a poor prognosis in patients with bladder cancer. However, the role of miR‐222 remains unclear. In the present study, we found that miR‐222 enhanced the proliferation of both the T24 and the 5637 bladder cancer cell lines. Overexpression of miR‐222 attenuated cisplatin‐induced cell death in bladder cancer cells. miR‐222 activated the Akt/mTOR pathway and inhibited cisplatin‐induced autophagy in bladder cancer cells by directly targeting protein phosphatase 2A subunit B (PPP2R2A). Blocking the activation of Akt with LY294002 or mTOR with rapamycin significantly prevented miR‐222‐induced proliferation and restored the sensitivity of bladder cancer cells to cisplatin. These findings demonstrate that miR‐222 modulates the PPP2R2A/Akt/mTOR axis and thus plays a critical role in regulating proliferation and chemotherapeutic drug resistance. Therefore, miR‐222 may be a novel therapeutic target for bladder cancer.  相似文献   

16.
17.
Mesenchymal stem cells (MSCs) hold great promise as therapeutic agents in regenerative medicine. They are also considered as a preferred cell source for urinary tract reconstruction. However, as MSCs exhibit affinity to tumor microenvironment, possible activation of tumor-initiating cells remains a major concern in the application of stem cell-based therapies for patients with a bladder cancer history. To analyze the influence of adipose-derived stem cells (ASCs) on bladder cancer cells with stem cell-like properties, we isolated CD133-positive bladder cancer cells and cultured them in conditioned medium from ASCs (ASC-CM). Our results showed that parental 5637 and HB-CLS-1 cells showed induced clonogenic potential when cultured in ASC-CM. Soluble mediators secreted by ASCs increased proliferation and viability of unsorted cells as well as CD133+ and CD133− subpopulations. Furthermore, incubation with ASC-CM modulated activation of intracellular signaling pathways. Soluble mediators secreted by ASCs increased phosphorylation of AKT1/2/3 (1.4-fold, P < 0.05), ERK1/2 (1.6-fold, P < 0.02), and p70 S6K (1.4-fold) in CD133+ cells isolated from 5637 cell line. In turn, decreased phosphorylation of those three proteins involved in PI3K/Akt and MAPK signaling was observed in CD133+ cells isolated from HB-CLS-1 cell line. Our results revealed that bladder cancer stem-like cells are responsive to signals from ASCs. Paracrine factors secreted by locally-delivered ASCs may, therefore, contribute to the modulation of signaling pathways involved in cancer progression, metastasis, and drug resistance.  相似文献   

18.
Identification and characterization of biomarkers in body fluids such as serum or urine serve as a basis for early detection of diseases, particularly of cancer. Performing 2-DE with subsequent MS analyses, conventional immunoblotting and immunohistochemistry we identified two proteins, orosomucoid (ORM) and human zinc-alpha(2)-glycoprotein (ZAG), which were increased in the urine samples of patients with bladder cancer in comparison to the urine samples of healthy volunteers. The highest amount of both proteins was found in invasive bladder cancer stages such as pT2-3. Immunohistochemical studies showed ORM in inflammatory cells but also in endothelial cells of blood vessels within or adjacent to the tumor area and in part of the tumor cells. ZAG was prominent in tumor cells at the tumor invasion front. Additionally, ZAG was localized at the luminal surface of normal urothelium, which switches to the basal side when a superficial papillary tumor was observed. These results show that we have been able to identify two new proteins that may be related to the development of superficial bladder cancer and to its switch to an invasive phenotype.  相似文献   

19.
20.
The presence of inflammatory cells and their products in the tumor microenvironment plays a crucial role in the pathogenesis of a tumor. Releasing the cytokines from a host in response to infection and inflammation can inhibit tumor growth and progression. However, tumor cells can also respond to the host cytokines with increasing the growth/invasion/metastasis. Bladder cancer (BC) is one of the most common cancers in the world. The microenvironment of a bladder tumor has been indicated to be rich in growth factors/inflammatory cytokines that can induce the tumor growth/progression and also suppress the immune system. On the contrary, modulate of the cancer progression has been shown following upregulation of the cytokines-related pathways that suggested the cytokines as potential therapeutic targets. In this study, we provide a summary of cytokines that are involved in BC formation/regression with both inflammatory and anti-inflammatory properties. A more accurate understanding of tumor microenvironment creates favorable conditions for cytokines targeting to treat BC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号