首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have introduced a convenient synthesis method for carbamate-linked cationic lipids. Two cationic lipids N-[1-(2,3-didodecylcarbamoyloxy)propyl]-N,N,N-trimethylammonium iodide (DDCTMA) and N-[1-(2,3-didodecyl carbamoyloxy)propyl]-N-ethyl-N,N-dimethylammonium iodide (DDCEDMA), with identical length of hydrocarbon chains, alternative quaternary ammonium heads, carbamate linkages between hydrocarbon chains and quaternary ammonium heads, were synthesized for liposome-mediated gene delivery. Liposomes composed of DDCEDMA and DOPE in 1:1 ratio exhibited a lower zeta potential as compared to those made of pure DDCEDMA alone, which influences their DNA-binding ability. pGFP-N2 plasmid was transferred by cationic liposomes formed from the above cationic lipids into Hela and Hep-2 cells, and the transfection efficiency of some of cationic liposomes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and DOTAP. Combined with the results of the agarose gel electrophoresis and transfection experiment, the DNA-binding ability of cationic lipids was too strong to release DNA from complex in the transfection, which could lead to relative low transfection efficiency and high cytotoxicity.  相似文献   

2.
In the present study, nonionic surfactant vesicles (niosomes) formulated with Span 20, cholesterol, and novel synthesized spermine-based cationic lipids with four hydrocarbon tails in a molar ratio of 2.5:2.5:1 were investigated as a gene carrier. The effects of the structure of the cationic lipids, such as differences in the acyl chain length (C14, C16, and C18) of the hydrophobic tails, as well as the weight ratio of niosomes to DNA on transfection efficiency and cell viability were evaluated in a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The niosomes were characterized both in terms of morphology and of size and charge measurement. The formation of complexes between niosomes and DNA was verified with a gel retardation assay. The transfection efficiency of these cationic niosomes was in the following order: spermine-C18 > spermine-C16 > spermine-C14. The highest transfection efficiency was obtained for transfection with spermine-C18 niosomes at a weight ratio of 10. Additionally, no serum effect on transfection efficiency was observed. The results from a cytotoxicity and hemolytic study showed that the cationic niosomes were safe in vitro. In addition, the cationic niosomes showed good physical stability for at least 1 month at 4°C. Therefore, the cationic niosomes offer an excellent prospect as an alternative gene carrier.  相似文献   

3.
We synthesized cationic lipids bearing lysine, histidine, or arginine as a cationic headgroup for use in gene transfer studies. The cationic assemblies formed from lysine- or arginine-type lipids gave unilamellar vesicles (approximately 100 nm diameter), whereas the morphology of the histidine-type lipids was tube-like. The competences of the cationic assemblies were sufficient to form lipoplexes, and the resulting lipoplexes were evaluated in terms of gene expression efficiencies with COS-7 cells. The lysine- or arginine-type lipids exhibited higher gene expression efficiencies than that of Lipofectamine2000, a conventional transgenic reagent, indicating that stable lipoplexes could be prepared between spherical cationic assemblies and plasmid DNA. The gene expression efficiency in relation to the cationic headgroup of the lipids was as follows: lysine > or = arginine > histidine. In addition, gene expression efficiency was enhanced by decreasing the length of the alkyl chain of the hydrophobic moiety. Unlike Lipofectamine2000, no reduction in transfection efficiency in the presence of fetal bovine serum was observed for the lipoplexes formed using synthetic cationic lipids. Moreover, the synthetic cationic lipids revealed remarkably low cytotoxicity compared with Lipofectamine2000. In conclusion, cationic assemblies formed from 1,5-ditetradecyl-N-lysyl-L-glutamate or 1,5-ditetradecyl-N-arginyl-L-glutamate can be used as an effective plasmid DNA delivery system.  相似文献   

4.
Series of cationic lipids 1a-p, with variable length of hydrocarbon chains, alternative quaternary ammonium heads, carbamate linkages between hydrocarbon chains and quaternary ammonium heads, as well as different anion combined with them, were synthesized for liposome-mediated gene delivery. Two plasmid DNAs, pGL3-control and pGFP-N2, were transferred by cationic liposomes formed from the above cationic lipids into five mammalian cell lines, and the transfection efficiency of some of the cationic liposomes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and Sofast.  相似文献   

5.
A novel series of cationic amphiphiles based on dialkyl glutamides with cationic pyridinium head group were synthesized as potential gene delivery agents. Four cationic lipids with glutamide as linker and varying chain lengths were tested for their transfection efficiency in three cell lines. The DNA-lipid complexes were characterized for their ability to bind to DNA, protection from nuclease digestion, size, zeta-potential, and toxicity. All four lipids demonstrated efficient transfection in MCF-7, COS, and HeLa cells, and the reporter gene expression was much higher with DOPE as the helper lipid in the formulation when compared to cholesterol. Among these 14-carbon lipids, lipid 2 has shown the highest transfection efficiency, complete protection of DNA from nuclease digestion, and low toxicity. Interestingly, lipid 2 has also shown remarkable enhancement in transfection in the presence of serum.  相似文献   

6.
The new cholesterol-based cationic lipids B, C, and D with an ether linked spacer were synthesized by using aminopropyl chain extension with acrylonitrile. The cholesterol-based cationic lipid A with carbamoyl linkage were also synthesized in order to compare the difference in transfection efficiency of the two linkage types. To this end, GFP expression of these cationic lipids was confirmed respectively.  相似文献   

7.
Design, syntheses, and gene delivery efficacies of fifteen novel gemini (dimeric) and three monomeric cationic lipids anchored on an aromatic backbone have been described. Each new lipid has been used for liposome formation, and optimal formulations were used to determine the structure-activity correlation of the gene transfection efficacies of these lipids in HeLa and HT1080 cells. The results of the present investigation bring out the effect of hydrocarbon chain lengths and the length of the spacer between the headgroups on gene transfection efficiencies of the cationic gemini lipids based on aromatic backbone. The lipids bearing n-C 14H 29 hydrocarbon chain lengths have been found to be the best transfecting agents compared to their counterparts with n-C 16H 33 and n-C 12H 25 chains in HeLa cells. On the other hand, in HT1080 cells, the lipids based on n-C 12H 25 and n-C 14H 29 chains were found to be more potent transfecting agents than lipids possessing n-C 16H 33 chains. Transmission electron microscopy examination revealed the existence of spherical lipid-DNA complexes.  相似文献   

8.
Twenty-four asymmetric divalent head group cholesterol-based cationic lipids were designed and synthesized by parallel solid phase chemistry. These asymmetric head groups composed of amino functionality together with trimethylamino, di(2-hydroxyethyl)amino or guanidinyl groups. Spacers between cationic heads and linker were both equal and unequal in length. These lipids were subjected to evaluation for DNA binding affinities by gel retardation assay and were screened for their transfection efficiency on HEK293 cells. Cationic lipids with equal chain length exhibited high transfection efficiency when polar part contained asymmetric polar heads. In contrast, lipids with unequal chain length exhibited high transfection efficiency when polar part contained symmetric heads. According to the optimal formulation, seven lipids exhibited higher transfection efficiency than the commercially available transfection agents, Effectene?, DOTAP and DC-Chol, to deliver DNA into PC3 human prostate adenocarcinoma cells. 3β-[N-(N′-Guanidinyl)-2′-aminoethyl)-N-(2-aminoethyl)carbamoyl] cholesterol (5) bearing amino and guanidinyl polar heads exhibited highest transfection efficiency with minimal toxicity. The morphology of active liposomes was observed by transmission electron microscopy (TEM) and size of liposomes were around 200–700 nm.  相似文献   

9.
A series of novel 1,4,7,10-tetraazacyclododecanes (cyclen)-based cationic lipids bearing histidine imidazole group 10a10e were synthesized. These amphiphilic molecules have different hydrophobic tails (long chain, cholesterol or α-tocopherol) and various type of linking groups (ether, carbamate or ester). These molecules were used as non-viral gene delivery vectors, and their structure–activity relationships were investigated. As expected, the imidazole group could largely improve the buffering capabilities comparing to cyclen. The liposomes formed from 10 and dioleoylphosphatidyl ethanolamine (DOPE) could bind and condense plasmid DNA into nanoparticles with proper size and zeta-potentials. Comparing with Lipofectamine 2000, the formed lipoplexes gave lower transfected cells proportion, but higher fluorescence intensity, indicating their good intracellular delivering ability. Furthermore, results indicate that transfection efficiency of the cationic lipids is influenced by not only the hydrophobic tails but also the linking group. The cyclen-based cationic lipid with α-tocopherol hydrophobic tail and an ester linkage could give the highest transfection efficiency in the presence of serum.  相似文献   

10.
Four novel cationic lipids with different numbers of oxyethylene units at the linkage region between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized and used as mixtures with 1,2-dioleoyl-L-alpha-glycero-3-phosphatidyl ethanolamine (DOPE) for liposome-mediated gene transfection. Incorporation of different numbers of oxyethylene (-CH(2)CH(2)O-) units between long hydrocarbon chain at the C-1 and C-2 positions of the pseudoglyceryl skeleton improved the transfection efficiency considerably compared to the one in which the chains were connected via simple ether links. A pronounced improvement in the gene transfer efficiency was observed with the unsymmetrical cationic lipid 3 in which the long hydrocarbon at the C-1 position of the pseudoglyceryl segment is connected via two (-CH(2)CH(2)O-) units. Notably, the transfection ability of lipid 3 with DOPE in the presence of serum was significantly greater than LIPOFECTAMINE. This suggests that introduction of oxyethylene units between long hydrocarbon chains at the C-1 and C-2 positions of the pseudoglyceryl skeleton provides a novel strategy to achieve efficient gene transfer, especially in conditions where the presence of serum is critical.  相似文献   

11.
Six novel gemini cationic lipids based on aromatic backbone, bearing n-C14H 29 or n-C16H33 hydrocarbon chains, differing in the length of oxyethylene type spacers -CH2-(CH2-O-CH2)m-CH2- between each ammonium headgroups have been synthesized, where m varies from 1 to 3. Each of these lipids formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of each cationic lipid and DOPE. These were used as nonviral gene delivery agents. Transfection studies showed that among lipids bearing n-C14H29 chains, the transfection efficacies decreased with the increase in the length of the spacer, whereas in case of lipids bearing n-C 16H33 chains, the transfection efficacies increased with the increase in the length of the spacer. Lipid bearing n-C16H33 hydrocarbon chains with a [-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2)-] spacer was found to be a potent gene transfer agent and its transfection was highly serum compatible even in the presence of 50% serum conditions.  相似文献   

12.
Detailed structure-activity investigations aimed at probing the anchor chain length dependency for glycerol-based lipofectins have been reported previously. Herein, we report on the first detailed investigation on the anchor-dependent transfection biology of non-glycerol based simple monocationic cytofectins containing single 2-hydroxyethyl head group functionality using 11 new structural analogs of our previously published first generation of non-glycerol based transfection lipids (lipids 1-11). The C-14 and C-16 analogs of DOMHAC (lipids 4 and 5, respectively) were found to be remarkably efficient in transfecting COS-1 cells. In addition, the present anchor-dependency investigation also revealed that the C-14 analog of DOHEMAB (lipid 10) is significantly efficient in transfecting both COS-1 and NIH3T3 cells. Our results also indicate that too strong lipid-DNA interactions might result in weaker transfection for non-glycerol based cationic lipids. In summary, the anchor-dependence investigations presented here convincingly demonstrate that non-glycerol based cationic lipids containing a single hydroxyethyl head group and hydrophobic C-14 or C-16 anchors are promising non-toxic cationic transfection lipids for future use in liposomal gene delivery.  相似文献   

13.
The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.Key words: cationic lipids, cationic liposomes, gene transfection  相似文献   

14.
We have synthesized a series of cationic amino acid-based lipids having a spacer between the cationic head group and hydrophobic moieties and examined the influence of the spacer on a liposome gene delivery system. As a comparable spacer, a hydrophobic spacer with a hydrocarbon chain composed of 0, 3, 5, 7, or 11 carbons, and a hydrophilic spacer with an oxyethylene chain (10 carbon and 3 oxygen molecules) were investigated. Plasmid DNA (pDNA)-encapsulating liposomes were prepared by mixing an ethanol solution of the lipids with an aqueous solution of pDNA. The zeta potentials and cellular uptake efficiency of the cationic liposomes containing each synthetic lipid were almost equivalent. However, the cationic lipids with the hydrophobic spacer were subject to fuse with biomembrane-mimicking liposomes. 1,5-Dihexadecyl-N-lysyl-N-heptyl-l-glutamate, having a seven carbon atom spacer, exhibited the highest fusogenic potential among the synthetic lipids. Increased fusion potential correlated with enhanced gene expression efficiency. By contrast, an oxyethylene chain spacer showed low gene expression efficiency. We conclude that a hydrophobic spacer between the cationic head group and hydrophobic moieties is a key component for improving pDNA delivery.  相似文献   

15.
A combination of two cationic lipid derivatives having the same headgroup but tails of different chain lengths has been shown to have considerably different transfection activity than do the separate molecules. Such findings point to the importance of investigating the hydrophobic portions of cationic amphiphiles. Hence, we have synthesized a variety of cationic phosphatidylcholines with unusual hydrophobic moieties and have evaluated their transfection activity and that of their mixtures with the original molecule of this class, dioleoyl-O-ethylphosphatidylcholine (EDOPC). Four distinct relationships between transfection activity and composition of the mixture (plotted as percent of the new compound added to EDOPC) were found, namely: with a maximum or minimum; with a proportional change; or with essentially no change. Relevant physical properties of the lipoplexes were also examined; specifically, membrane fusion (by fluorescence resonance energy transfer between cationic and anionic lipids) and DNA unbinding (measured as accessibility of DNA to ethidium bromide by electrophoresis and by fluorescence resonance energy transfer between DNA and cationic lipid), both after the addition of negatively charged membrane lipids. Fusibility increased with increasing content of second cationic lipid, regardless of the transfection pattern. However, the extent of DNA unbinding after addition of negatively charged membrane lipids did correlate with extent of transfection. The phase behavior of cationic lipids per se as well as that of their mixtures with membrane lipids revealed structural differences that may account for and support the hypothesis that a membrane lipid-triggered, lamellar-->nonlamellar phase transition that facilitates DNA release is critical to efficient transfection by cationic lipids.  相似文献   

16.
Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.  相似文献   

17.
BACKGROUND: We have studied the effects of the poly(ethylene glycol) (PEG) chain length and acyl chain composition on the pH-sensitivity of acid-labile PEG-diorthoester (POD) lipids. The optimal conditions are described for preparation of DNA plasmid encapsulated POD nanolipoparticles (NLPs) which mediate high gene delivery activity in vitro with moderate cytotoxicity. METHODS AND RESULTS: A series of POD lipids with various PEG chain lengths (750, 2000, and 5000 Da) or acyl chains (distearoyl 18:0 or dioleoyl 18:1) were incorporated into DNA containing NLPs or model liposomes as a stealth and bioresponsive component. We investigated the collapse kinetics of the POD-stabilized liposomes when the PEG chain length was changed. We optimized a detergent dialysis method to encapsulate plasmid DNA into NLPs prepared from a mixture of the various POD lipids, cationic lipid and phosphatidylethanolamine lipid. A critical concentration (28 mM) of n-octyl-beta-D-glucopyranoside (OG) enabled high encapsulation of DNA plasmid into 100 nm particles with a neutral surface charge. The POD NLPs are stable at pH 8.5 but rapidly collapse (approximately 10 min) into aggregates at pH 5.0. In the detergent solution there is a metastable DNA-lipid intermediate that evolves into a stable NLP if the detergent is removed shortly after adding DNA to the lipid-detergent mixture. The rank order of transfection activity from NLPs containing PEG-lipid was POD 750 > POD 5000 = POD 2000 > non-pH-sensitive PEG-lipid. The particle size stability was in the reverse order. Binding of the NLPs to cells reached a maximum level by 12 hours. The POD NLPs had slightly less transfection activity but considerably lower cytotoxicity than the PEI-DNA polyplex. CONCLUSIONS: Of the PEG-orthoester lipids tested, POD 2000 is the better choice for the preparation of sterically stabilized NLPs with a small particle diameter, good stability, low cytotoxicity, and satisfactory transfection activity.  相似文献   

18.
A series of charge-reversal lipids were synthesized that possess varying chain lengths and end functionalities. These lipids were designed to bind and then release DNA based on a change in electrostatic interaction with DNA. Specifically, a cleavable ester linkage is located at the ends of the hydrocarbon chains. The DNA release from the amphiphile was tuned by altering the length and position of the ester linkage in the hydrophobic chains of the lipids through the preparation of five new amphiphiles. The amphiphiles and corresponding lipoplexes were characterized by DSC, TEM, and X-ray, as well as evaluated for DNA binding and DNA transfection. For one specific charge-reversal lipid, stable lipoplexes of approximately 550 nm were formed, and with this amphiphile, effective in vitro DNA transfection activities was observed.  相似文献   

19.
The synthesis, physical properties, and transfection potencies of two representives of a new class of divalent, tetraalkyl cationic lipids is described. These cationic lipids are dimers of N,N-Dioleyl-N,N-dimethylammonium chloride (DODAC) joined by a hydrocarbon tether three or six carbons in length (TODMAC3 and TODMAC6, respectively). It is shown that TODMAC6 can display improved transfection properties in comparison to DODAC when formulated into plasmid DNA-cationic lipid complexes. These improved transfection potencies are observed at cationic lipid to DNA charge ratios of two or higher. It is also shown that TODMAC6 exhibits equivalent or improved ability (as compared to DODAC) to induce nonbilayer structure in mixtures with anionic lipid. This is consistent with the hypothesis that the ability of cationic lipids to induce nonbilayer structures when mixed with anionic lipids is correlated to their transfection potency. Complexes containing TODMAC3 on the other hand exhibit lower transfection potencies than achieved with DODAC, behavior that is consistent with steric effects limiting the formation of ion pairs with anionic lipids. It is concluded that TODMAC6 exhibits potential as a transfection agent for in vitro and in vivo use and that the design of cationic lipids according to their ability to induce nonbilayer structure provides a useful guide for synthesis of new cationic lipids.  相似文献   

20.
Lipidic amphiphiles equipped with the trans-2-aminocyclohexanol (TACH) moiety are promising pH-sensitive conformational switches (“flipids”) that can trigger a lipid bilayer perturbation in response to increased acidity. Because pH-sensitivity was shown to improve the efficiency of several gene delivery systems, we expected that such flipids could significantly enhance the gene transfection by lipoplexes. Thus a series of novel lipids with various TACH-based head groups and hydrocarbon tails were designed, prepared and incorporated into lipoplexes that contain the cationic lipid 1,2-dioleoyl-3-trimethylammonio-propane (DOTAP) and plasmid DNA encoding a luciferase gene. B16F1 and HeLa cells were transfected with such lipoplexes in both serum-free and serum-containing media. The lipoplexes consisting of TACH-lipids exhibited up to two orders of magnitude better transfection efficiency and yet similar toxicity compared to the ones with the conventional helper lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol. Thus, the TACH-lipids can be used as novel helper lipids for efficient gene transfection with low cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号