首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wild carp, Cyprinus carpio, were sampled in January and March 2000 in a section of the Anoia River (NE Spain) known to be polluted by estrogenic compounds. At each sampling time, three groups were distinguished: (1) apparently normal males; (2) apparently normal females; and (3) affected fish. The latter were characterized by the simultaneous development of male and female tissue in their gonads at a macroscopical level (six out of 31 fish sampled at this particular point), or testicular atrophy (three out of 31). Plasmatic and hepatic vitellogenin (VTG) levels and plasma testosterone (T) and estradiol (E2) were measured to observe the particular estrogenic response of the affected fish. Moreover, the response in the xenobiotic metabolizing capacity in liver was tested. This involved the analysis of mixed function oxygenase (MFO) system such as: total cytochrome P450 content, NAD(P)H cytochrome c reductases and the associated CYP1A1, EROD activity. Also, glutathione S-transferase (GST) and UDP-glucuronosyltransferase (UDPGT) as detoxifying enzymes were measured. Our results showed: (1) a highly variable VTG content in all fish groups; (2) an increase in sex hormones content in March for the female group; and (3) an enhanced xenobiotics metabolism in the affected fish group, measured as total cytochrome P450, EROD activity in the January survey and cytosolic GST in March. The observed increase in VTG, sex hormones and in most of the enzymatic activities from January to March that could also be attributed to higher water temperature.  相似文献   

2.
Higher plants growing in natural environments experience various abiotic stresses. The aim of this study was to determine whether exposure to temperature-stress would lead to oxidative stress and whether this effect varied with different exposure periods. The thermal dependencies of the activities of protective enzymes, photosynthetic efficiency (Fv/Fm), protein, non-protein thiol (NP-SH), cysteine content, lipoxygenase (LOX) activity (EC 1.13.11.12) and malondialdehyde (MDA) content at 25-40 degrees C were determined for 4, 24 and 48 h in leaf and root segments of Phalaenopsis. The increase in MDA level and LOX activity may be due to temperature-associated oxidative damage to leaf and root segments. Temperature-stress induced not only activities of active oxygen species (AOS) scavenging enzymes but also protein, NP-SH and cysteine content in both leaf and root segments at 30 degrees C for 4 and 24 h (except for 48 h in some cases) compared to 25 degrees C-and greenhouse-grown leaf and root segments indicating that antioxidants enzymes played an important role in protecting plant from temperature-stress. However, activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1), glutathione peroxidase (GPX, EC 1.11.1.9) and glutathione-S-transferase (GST, EC 2.5.1.18) in leaf and root, glutathione reductase (GR, EC 1.6.4.2) in leaf and guaiacol peroxidase (G-POD, 1.11.1.7) in root segments were induced significantly at 40 degrees C compared to 25 degrees C and greenhouse-grown plants suggesting that these enzymes play protective roles at high temperature. In contrast, activities of superoxide dismutase (SOD, EC 1.15.1.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) in leaf and root, catalase (CAT, EC 1.11.1.6) in root, GR in root, and protein, cysteine, NP-SH content in both root and leaf and Fv/Fm ratio were diminished significantly at 40 degrees C compared to 25 degrees C-and greenhouse-grown plants. These indicate that these enzymes were apparently not involved in detoxification process and sensitive at higher temperature. Also, the close relation between activities of enzymes with their metabolites at 30 degrees C than 40 degrees C indicated that the antioxidants enzymes and metabolites both may play an important role in protecting cells against the temperature-stress.  相似文献   

3.
The activities of catalase (Cat), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione transferase (GST), glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde3-phosphate dehydrogenase (G3PD) were studied in tissue and hemolymph of susceptible (S) (EgBS(2)) and resistant (R) (EgBR(2)) Biomphalaria alexandrina snails. The results showed that CAT and GST were higher in the hemolymph of snails susceptible to Schistosoma mansoni than in that of snails resistant to infestation, while SOD and G3PD were lower in the susceptible snails. The role of these enzymes as free radical scavengers was traced 1 and 24 h after infection of the two snail lines with S. mansoni. Moreover, the activities of SOD and G3PD were also measured 2 and 4 weeks post infection. The results revealed that the overall enzymatic activities were higher in susceptible than in resistant snail tissues. After 1 h of infection, all enzymes were increased in R and S snails except GST and G6PD which decreased in S snails. After 24 h of infection, GST increased in S snails and G3PD decreased in both S and R snails while other enzymes reached normal levels.  相似文献   

4.
The obligate homodimer human glutathione synthetase (hGS) provides an ideal system for exploring the role of protein–protein interactions in the structural stability, activity and allostery of enzymes. The two active sites of hGS, which are 40 Å apart, display allosteric modulation by the substrate γ-glutamylcysteine (γ-GC) during the synthesis of glutathione, a key cellular antioxidant. The two subunits interact at a relatively small dimer interface dominated by electrostatic interactions between S42, R221, and D24. Alanine scans of these sites result in enzymes with decreased activity, altered γ-GC affinity, and decreased thermal stability. Molecular dynamics simulations indicate these mutations disrupt interchain bonding and impact the tertiary structure of hGS. While the ionic hydrogen bonds and salt bridges between S42, R221, and D24 do not mediate allosteric communication in hGS, these interactions have a dramatic impact on the activity and structural stability of the enzyme.  相似文献   

5.
Activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glucose-6-phophate dehydrogenase (G6PDH) were measured in four tissues of goldfish, Carassius auratus L., over 1-12 h of high temperature (35 degrees C) exposure followed by 4 or 24 h of lower temperature (21 degrees C) recovery. SOD activity was strongly affected by heat shock, increasing 4-fold in brain, liver, and kidney, but was mainly reversed at recovery. In some tissues, activities of SOD, catalase, GPx, and G6PDH decreased significantly after 1 h heat shock exposure suggesting that thermal inactivation possibly occurred, but were renewed at further exposure. In many cases, 4 h of return to the initial temperature decreased enzyme activities. High correlation coefficients between SOD activities and levels of lipid peroxidation products suggest that these products might be involved in up-regulation of antioxidant defense. Several enzymes (SOD, GST, GR) responded to stress in coordinated manner.  相似文献   

6.
Coronatine (COR) is a chlorosis-inducing phytotoxin that mimics some biological activities of methyl jasmonate. This study investigated whether COR confers salinity tolerance to cotton and whether such tolerance is correlated with changes in the activity of antioxidant enzymes. COR at 0.01muM was applied hydroponically to cotton seedlings at the two-leaf stage for 24h. A salinity stress of 150mM NaCl was imposed after completion of COR treatment for 15d. Salinity stress reduced biomass of seedlings and increased leaf superoxide radicals, hydrogen peroxide, lipid peroxidation, and electrolyte leakage. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and of the stable free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH), scavenging activity were altered by salinity to varying degrees. Pretreatment with COR increased the activities of CAT, POD, GR, and DPPH scavenging activity in leaf tissues of salinity-stressed seedlings. Thus, COR might reduce the production of reactive oxygen species by activating antioxidant enzymes and DPPH-radical scavenging, thereby preventing membrane peroxidation and denaturation of bio-molecules.  相似文献   

7.
In Tierra del Fuego (Southern South America), the stone or false king crab, Paralomis granulosa represents one of the most important crab fisheries. After capture, animals are kept in baskets and exposed to dryness for several hours, when the water flow through the gills is interrupted. As a consequence a concomitant increase of reactive oxygen species begins, triggering oxidative stress. The aim of this study was to determine oxidative stress and antioxidant enzyme activities due to air exposure in different tissues of P. granulosa. Fifty crabs (carapace length >82 mm) were captured in Beagle Channel (54 degrees 50'S, 68 degrees 20'W) during winter 2004. Five groups of 10 crabs each were exposed to dryness at 6 degrees C for 0, 3, 6, 12 or 24 h, respectively. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione S transferase (GST) protein and lipid oxidation were measured in gills, muscle, hepatopancreas and haemolymph samples. Almost all analyzed tissues showed antioxidant enzymes activity, which varied with time of air exposure. The maximum enzyme activity was measured after 6 h of air exposure. Protein oxidation levels varied significantly in gills. Lipid peroxidation levels increased significantly in muscle and hepatopancreas. The critical time of air exposure probably occurs at 6 h. Thereafter animals were unable to induce the synthesis of antioxidant enzymes or proteins. This should be taken into account to minimize the stress generated by the commercial capture process.  相似文献   

8.
T Ozen  H Korkmaz 《Phytomedicine》2003,10(5):405-415
The effects of two doses (50 and 100 mg/kg body wt given orally for 14 days) of an ethanol-water (80%-20%) extract of Urtica dioica L. and butylated hydroxyanisole (BHA) were investigated, for phase I and phase II enzymes, antioxidant enzymes, lactate dehydrogenase, lipid peroxidation and sulfhydryl groups in the liver of Swiss albino mice (8-9 weeks old). A modulatory effect of two doses and BHA was also observed for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in the kidney, lung and forestomach, as compared with the control group. The activities of cytochrome b5 (cyt b5), NADH-cytochrome b5 reductase (cyt b5 R), glutathione S-transferase (GST), DT-diaphorase (DTD), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) showed a significant increase in the liver at both dose levels of extract. Both extract-treated showed significantly lower activity of cytochrome P450 (cyt P450), lactate dehydrogenase (LDH), NADPH-cytochrome P450 reductase (cyt P450 R), total sulfhydryl groups (T-SH), nonprotein sulfhydryl groups (NP-SH) and protein-bound sulfhydryl groups (PB-SH). BHA-treated Swiss albino mice showed a notable increase in levels of cyt b5, DTD, T-SH, PB-SH, GPx, GR, and SOD in the liver while, LDH, cyt P450, cyt P450 R, Cyt b5 R, GST, NP-SH, and CAT levels were reduced significantly as compared to control values. The extract was effective in inducing GST, DTD, SOD and CAT activity in the forestomach and SOD and CAT activity in the lung at both dose levels. BHA-treated Swiss albino mice induced DTD, GST and all antioxidative parameters in the kidney, lung and forestomach.  相似文献   

9.
Endotoxin exposure elicits various responses in mammals including the acute phase response that has been shown to cause changes in the activity of several forms of cytochrome P450s and other enzymes. Therefore, the hepatic conjugating enzyme, glutathione S‐transferase (GST), and UDP‐glucuronosyltransferase (UDPGT), the antioxidant enzymes, glutathione peroxidase (GSHPx), catalase, and superoxide dismutase (SOD), as well as lipid peroxidation were investigated following the administration of endotoxin to male Sprague–Dawley rats (8 mg/kg body weight). Rats were euthanized at various times following endotoxin administration and the livers removed and processed to assess various enzyme activities. Glutathione S‐transferase, UDPGT, and GSHPx activity showed statistically significant decreases after 24 hours and remained lower than controls for the duration of the study. Decreases in total SOD and catalase activities were seen at 24, 48, and 72 hours following endotoxin administration; however, only catalase activity showed statistically significant differences between control and treated samples at those time points, and total SOD activity showed a statistically significant decrease at 24 hours. No statistically significant changes were seen in the level of lipid peroxidation in the liver microsomes from endotoxin‐treated animals. Changes in the conjugative enzymes and the free‐radical scavenging enzymes following endotoxin exposure may alter the host's metabolism and response to free radicals. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 63–69, 1999  相似文献   

10.
This study was undertaken to clarify the physiological role of catalase in the maintenance of pro/antioxidant balance in goldfish tissues by inhibiting the enzyme in vivo with 3-amino 1,2,4-triazole. Intraperitoneal injection of aminotriazole (0.5 mg/g wet mass) caused a decrease in liver catalase activity by 83% after 24 h that was sustained after 168 h post-injection. In kidney catalase activity was reduced by approximately 50% and 70% at the two time points, respectively. Levels of protein carbonyls were unchanged in liver but rose by 2-fold in kidney after 168 h. Levels of thiobarbituric acid-reactive substances were elevated in both tissues after 24 h but were reversed by 168 h. Glutathione peroxidase and glutathione-S-transferase activities increased in kidney after aminotriazole treatment whereas activities of glutathione peroxidase and glutathione reductase in liver decreased after 24 h but rebounded by 168 h. Liver glucose-6-phosphate dehydrogenase activity was reduced at both time points. Activities of these three enzymes in liver correlated inversely with the levels of lipid damage products (R2=0.65-0.81) suggesting that they may have been oxidatively inactivated. Glutathione-S-transferase activity also correlated inversely with catalase (R2=0.86). Hence, the response to catalase depletion involves compensatory changes in the activities of enzymes of glutathione metabolism.  相似文献   

11.
The effect of elevated light treatment (25 degrees C, PPFD 360 mumol m-2 sec-1) or chilling temperatures combined with elevated light (5 degrees C, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photooxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities. Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degrees C and 5 degrees C. Measurements at 5 degrees C revealed a 3-fold reduction in catalase activity, compared with that measured at 25 degrees C, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5-fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degrees C. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.  相似文献   

12.
Lipid peroxidation in the liver of carcinogen-resistant rats   总被引:3,自引:0,他引:3  
Recently, we developed a new strain of rats that exhibit marked resistance to the hepatotoxic and carcinogenic actions of 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB) and some other carcinogens. In this work, we compared lipid peroxidation in the liver of these carcinogen-resistant (R) rats and the parental Donryu strain rats that are sensitive (S) to hazardous actions of these carcinogens. The liver microsomal fractions of the R group contained less amounts of polyunsaturated fatty acids. Microsomal lipid peroxidation in the presence of exogenous NADPH was much lower in R rats than in S rats. Liver microsomes of R rats were much less active than those of S rats also in producing 4-hydroxynonenal, carbonyl compounds and conjugated diene. The hepatic contents of ascorbic acid, glutathione, alpha-tocopherol and coenzyme Q in the R rats were similar to those in S rats. The activities of the free radical scavenger enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), in the two groups were also similar. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are both thought to function in disposal of these cytotoxic aldehydes. The liver microsomal and mitochondrial ALDH activities of the two groups were similar. The ADH activity of the liver cytosolic fraction of R rats was nearly twice that of S rats, as measured with 4-hydroxynonenal as substrate. The higher ADH activity may explain the decreased lipid peroxidation in R rats at least partly, if this enzyme is involved in lipid peroxidation.  相似文献   

13.
The effects of cold acclimation on the activity levels of cytochrome c oxidase, glutathione peroxidase and glutathione reductase in various tissues of the rat (Rattus norvegicus) were investigated. One group was individually housed at 4 +/- 1 degrees C and the other at 24 +/- 1 degrees C for 6 months. Chronic cold acclimation resulted in significantly (P < 0.05) increased cytochrome c oxidase activity levels in liver, kidney, heart, interscapular brown adipose tissue and gastrocnemius muscle. The activity of glutathione peroxidase was significantly (P < 0.05) elevated in liver, interscapular brown adipose tissue, lung and muscle, whereas glutathione reductase was only significantly (P < 0.05) elevated in interscapular brown adipose tissue as a result of chronic cold exposure. The results obtained are possibly indicative of a positive compensatory response against the increased production of oxygen derived radicals as a result of chronic cold exposure.  相似文献   

14.
Kankofer M  Kolm G  Aurich J  Aurich C 《Theriogenology》2005,63(5):1354-1365
Sperm cell membranes are susceptible to peroxidative damage by an excess of reactive oxygen species (ROS). Antioxidative defence systems consisting of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) physiologically control the balance between ROS production and neutralization. In the present study the hypothesis was tested that lipid peroxidation occurs during storage of semen at 5 degrees C and that semen extender has positive effects on the antioxidative potential of equine semen. The aim of the study was to determine the activity of GSH-Px, SOD and CAT and the concentration of thiobarbituric acid reactive substances (TBARS) as an indicator of lipid peroxidation in native semen and after addition of extender, cooling and storage. Semen was collected from fertile Shetland stallions. In experiment 1, activity of antioxidative enzymes was determined immediately after semen collection and after 24 h storage at 5 degrees C. Enzyme activities were measured in native semen, semen diluted with semen extender, spermatozoa resuspended after centrifugation in extender and 0.9% NaCl as well as in undiluted and extender-diluted seminal plasma. In experiment 2, TBARS concentrations were analysed during storage of semen at 5 degrees C for 24 h. Semen storage for 24 h at 5 degrees C did not change activity of the examined enzymes. Antioxidative activity was significantly higher in extended than in native semen as well as in extended plasma than in undiluted plasma. In conclusion, the addition of semen extender increases the antioxidative activity in seminal plasma of stallions. Basal antioxidative activity in native semen as well as increased activity in extended semen are maintained over 24 h storage at 5 degrees C. TBARS content did not increase during semen storage. In conclusion, lipid peroxidation does not increase substantially during semen storage. The enzymatic antioxidative activity in semen apparently prevents ROS formation and is further increased by addition of semen extender.  相似文献   

15.
A mutant of BHK cells (ts422E) temperature-sensitive for processing 32S rRNA to 28S rRNA (Toniolo et al., '73) also loses the ability to synthesize polyamines and 5.8S rRNA when shifted to the non-permissive temperature (39 degrees). The activity of several enzymes not involved with polyamine synthesis, methylation of 32S rRNA, and small nuclear RNA production are apparently unaffected after at least 24 hours at 39 degrees. When cultures are returned to the permissive temperature (33 degrees), polyamine synthesizing capacity returns to normal as mature rRNA production resumes.  相似文献   

16.
17.
Oxidative stress is closely related to clinical severity of pre-eclampsia   总被引:1,自引:0,他引:1  
Pre-eclampsia is a hypertensive disorder of pregnancy in which enzymatic antioxidant defenses fail and tissues are injured. This prospective case-control study evaluated whether pre-eclamptic women and their newborns show higher degrees of oxidative stress than normal pregnancies and sought to determine if this stress is related to clinical severity. Forty-four pre-eclamptic and thirty healthy pregnant women attending two hospitals in Valparaíso, Chile, were studied. The following plasmatic variables of antioxidant capacity were evaluated: glutathione peroxidase activity (GPx), total antioxidant capacity measured by oxidation of ABTS substrate (2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), and superoxide dismutase activity (SOD). malondialdehide (MDA) was measured to evaluate lipoperoxidation. The evaluation was performed at diagnosis of pre-eclampsia, delivery, 30 days and 120 days post delivery. Newborns were studied at delivery through umbilical cord blood samples. Our analysis shows that antioxidant enzyme activity (SOD, GPx, ABTS) was significantly decreased, while lipoperoxidation (MDA) was increased in both pre-eclamptic groups compared to normal pregnant women (p<0.01). Statistically significant difference was found between mild and severe pre-eclamptic groups (p<0.01), for all biochemical markers studied. Therefore, the clinical severity of this pathology is closely related to the degree of oxidative stress.  相似文献   

18.
The stability of glutathione peroxidase was assessed in vitro via oxidative inactivation by peroxides and a peroxidizing fatty acid and by renaturation and proteolysis. The stability of glutathione peroxidase to methyl ethyl ketone peroxide, H2O2, linoleic acid hydroperoxide, and peroxidizing methyl linolenate was compared with the stability of several other enzymes. Sulfhydryl enzymes were the most labile to all four treatments. Some of the enzymes tested were very stable to methyl ethyl ketone peroxide but very labile to linoleic acid hydroperoxide treatment. Glutathione peroxidase in the absence of glutathione was relatively slowly inactivated by each treatment. Linoleic acid hydroperoxide damage to glutathione peroxidase was characterized by release of a nonstoichiometric amount of selenite from the protein. Glutathione peroxidase samples lost all of their activity when (i) acidified to pH 2, (ii) heated 5 min at 100 degrees C, and (iii) treated with 6 M guanidinium hydrochloride or 8.5 M urea and heated 5 min at 100 degrees C. When the pH 2 sample was neutralized or the guanidinium hydrochloride-treated sample was diluted 101-fold, about 80% of the original activity was recovered in 30 min. The samples treated with urea and heat recovered no activity when diluted 101-fold. No loss of glutathione peroxidase occurred during treatment for 24 h within trypsin or thermolysin. Based on these results, glutathione peroxidase appears to be a relatively stable enzyme, and thus is is well-suited to perform its role in peroxide detoxification and prevention of oxidative deterioration of cells.  相似文献   

19.
The maternal factors affecting the cytohormonal smear patterns of 200 puerperally fully lactating Nigerian women were studied. Lateral vaginal wall cytosmears obtained from these women during the sixth postnatal week showed a wide range of cytohormonal patterns, depicting varying degrees of epithelial regeneration. Maternal age, parity per se and the mode of delivery were found to be of no statistical significance in the determination of the cytohormonal patterns (0.1 greater than P greater than 0.05). However, the parity of the vaginally delivered patients was a highly statistically significant determinant (P less than 0.001), indicating a cumulative effect of trauma on the regenerative capability of the vaginal epithelium. Furthermore, a highly significant number (P less than 0.001) of these puerperally fully lactating women exhibited a midzone to cyclic cytohormonal smear pattern, with a maturation value greater than 50, thereby reflecting a near-maximal estrogenic activity and a resultant almost fully regenerated, mature vaginal epithelium in these women in the sixth postnatal week. The classical postnatal smear was found in only 36% of these women during the sixth postpartum week as opposed to the 28% previously documented for the first postnatal week.  相似文献   

20.
The ubiquitin/proteasome pathway is a highly conserved mechanism of proteolysis in all eukaryotes. Ubiquitin (Ub) is conjugated to proteolytic substrates through the sequential action of ubiquitin-activating (E1/Uba) and ubiquitin-conjugating (E2/Ubc) enzymes. The mechanism of substrate recognition and ubiquitination is an area of active investigation, and we have begun a site-directed mutagenesis approach to define the biochemical and biophysical properties of ubiquitin-conjugating enzymes. We have characterized a specific mutation in Ubc4 (Ubc4(P62S)) which was previously shown to cause a temperature-sensitive growth defect in several other Ubc's. Ubc4(P62S) was rapidly degraded in vivo, contributing to the loss of function. However, reconstitution experiments revealed that the catalytic activity of Ubc4(P62S) was reversibly inactivated at 37 degrees C, demonstrating that the primary defect of Ubc4(P62S) is its inability to form a ubiquitin thioester bond at high temperature. The in vivo defect is compounded by increased susceptibility of Ubc4(P62S) to degradation by the ubiquitin/proteasome pathway. We have exploited the temperature-dependent degradation of the P62S mutant to destabilize an otherwise stable test protein (glutathione S-transferase). The use of this mutant may provide a useful cis-acting temperature-inducible degradation signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号