首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
逆转录PCR及原位杂交检测人IgA肾病肾脏中TGF-β mRNA   总被引:2,自引:1,他引:1  
为研究转化生长因子-β(TGF-β)在IgA肾病病理机制中的作用,本文用逆转录PCR(RT-PCR)法及原位杂交法检测IgA肾病患者肾活检组织中的TGF-βmRNA。结果证实:在人正常肾和IgA肾病肾组织中均可检测到TGF-βmRNA的RT-PCR扩增产物;TGF-βmRNA原位杂交的阳性信号主要分布于肾小管和集合管上皮细胞内,肾小球内的阳性信号较弱,且强度与系膜的增生程度有关。  相似文献   

2.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用^3H-TdR参入、Northern blot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVEC DNA合成的作用及对血小板源生长因子(PGDF)、PGDF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或  相似文献   

3.
hEGF和hTGF—αN结构域与C结构域的功能差异   总被引:4,自引:0,他引:4  
用PCR的方法将人表皮生长因子和人转化生长因子-α(hTGF-α)的N结构域和C结构域互换,构造了两个嵌合分子E-TGF(EGF1-32-TGF-α34-50)和T-EGF(TGF-α1-33-EGF33-53)。野生型和嵌合分子基因在大肠杆菌phoA系统表达并纯化定量。各重组体的受体竞争结合活性大小为hEGF〉hTGF-α和E-TGF〉T0-EGF,它们的促细胞生长活性的大小为hTGF-α和E-  相似文献   

4.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

5.
用逆转录病毒载体将单纯疱疹病毒胸苷激酶基因(HSVtk)导入恶性肿瘤细胞,随后可应用药物9-(1,3-二羟基-丙氧基-甲基)鸟嘌呤(ganciclovir,GCV)选择性地杀死肿瘤细胞.将HyTK基因替换逆转录病毒载体GlNa中的neo基因,构建成重组逆转录病毒载体GTK,转染混合包装细胞(双噬性PA317细胞和单噬性GP+E-86细胞),通过“乒乓效应”获得高滴度重组病毒.用该重组病毒转染小鼠恶性黑色素瘤细胞系B16细胞,用hygromycinB筛选出阳性细胞克隆(HyTK+),经PCR方法检测证明HyTK基因已成功地导入肿瘤细胞中,且不含可复制的辅助病毒.分别用不同浓度的GCV作用于HyTK-及HyTK+的B16细胞,光镜下观察24h和48h后细胞形态及进行活细胞计数.结果表明,GCV浓度大于0.1μmol/L时即对B16/HyTK+细胞有显著的杀伤作用  相似文献   

6.
当归对高脂血清所致ECV_(304)细胞损伤的保护作用   总被引:2,自引:2,他引:0  
实验观察了高脂血清对培养的人脐静脉内皮细胞(ECV304)的损伤及传统中药当归的保护作用,以探讨当归的抗动脉粥样硬化作用及其可能机制。培养人脐静脉内皮细胞,以高脂血清作损伤因子,用扫描电镜观察细胞的超微结构,分光光度法检测细胞培养液中一氧化氮(NO)的含量,免疫细胞化学方法检测细胞表面细胞间粘附分子-1(ICAM-1)、碱性成纤维细胞生长因子(bFGF)及转化生长因子β1(TGFβ1)的表达。与高脂血清孵育24h后,内皮细胞的超微结构明显收损,且细胞表面ICAM-1、bFGF的表达明显增加,而细胞培养液中NO的量及细胞表达TGFβ1明显减少。加入当归后,高脂血清对内皮细胞的这些作用均可被逆转。当归对内皮细胞中ICAM-1、bFGF、TGFβ1及NO表达改变的影响可能与其抗动脉粥样硬化的作用有关。  相似文献   

7.
黑子南瓜甘油-3-磷酸酰基转移酶基因的克隆及序列分析   总被引:6,自引:3,他引:3  
依据国外报道的南瓜甘油-3-磷酸转酰酶(GPAT)基因的cDNA序列合成相应引物,用RT-PCR技术,成功地分离了黑子南瓜(Cucurbitaficifolia)GPAT基因的cDNA片段,并亚克隆到了pGEM-T载体系统的多克隆位点上,序列分析表明黑子南瓜GPAT基因的cDNA序列及递推的氨基酸序列与南瓜(Cucurbitamoschata)相比分别具有98%和965%的同源性。在1188bp中有22个核苷酸发生变化,导致13个氨基酸的改变  相似文献   

8.
黄瓜花发育的早期均有雌蕊和雄蕊原基的分化,但在发育过程中,由于雌蕊或雄蕊的发育受到阻滞,导致雄花和雌花的形成。近年来在拟南芥和金鱼草等植物中遗传学的研究表明,花器官的特征是由同源异形基因决定的。在拟南芥中,由于AG在决定雄蕊和雌蕊特征方面起重要作用,本研究利用 RT-PCR技术,从黄瓜的雌、雄蕊中分离出 AG的同源基因,并对其在花发育过程中的表达和可能作用进行了分析。首先,根据AG同源基因的保守区域设计5’简并引物5’-GA(A/G)AT(T/C/A)AA(T/C/A)AA(G/A)(A/C)G(G/T/C)ATCGA(C/A)AAC-3’,然后进行3’,RA CE PCR,扩增出约1kb大小的片段,序列分析表明该片段含有非常保守的MADS box。进而,利用5’ RACE PCR得到全长度的cDNA。该cDNA的核苷酸序列与CUM1(黄瓜 MADS box gene1)同源性高达97%。 CUM1在接牵牛中过量表达可引起花萼变为心皮状和花瓣变为雄蕊,说明CUM1为AG的同源基因。基于该基因与CUM1序列上的高度同源,我们认为其为黄瓜的AG同源基因。该基因命名为CMB1,基因银行登记号为AF286649。Souther  相似文献   

9.
利用COS7细胞暂时表达系统,研究转译起始序列对EPO-cDNA表达的影响。通过DNA重组技术,构建了原EPO-cDNA表达载体pCSV-EPO(1),其转译起始序列为5'AATTCATGG3'。同时通过定点突变技术,将起始序列改变成5'CCACCATGG3',而构建了另一表达载体PCSV-EPO(2)。后经序列分析证明无误后和前均通过DEAE-dextran法转染COS7细胞上清,测定结果为  相似文献   

10.
增生性瘢痕和瘢痕疙瘩的过度增生主要是由于高度增生活性的成纤维细胞的数量异常增多及细胞外基质合成增加所致.用逆转录病毒载体介导单纯疱疹病毒胸苷激酶基因(HSVtk)的转移,随后应用药物9-(1,3-二羟基-丙氧基-甲基)鸟嘌呤(ganciclovir,GCV)可选择性地杀死增生细胞.采用组织块贴壁法在体外原代培养成功增生性瘢痕病人的成纤维细胞(FB).重组逆转录病毒GTK转染FB细胞后,用hygromycinB筛选出阳性细胞克隆(FB/GTK),经PCR方法检测证明HyTK基因已成功地导入FB中,但不含可复制的辅助病毒.分别用不同浓度的GCV作用于FB/GTK及FB,光镜下观察不同时间后细胞形态变化及MTT法检测细胞活性.结果表明,GCV浓度大于0.1μmol/L时即对FB/GTK有显著的杀伤作用,且具有强有力的“旁观者效应”  相似文献   

11.
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen-presenting cells (APCs) to CD8+ T cells, and that this process resulted in the induction of antigen-specific cytotoxic T lymphocytes. In the present study, the mechanism by which the liposome-coupled antigens were cross-presented to CD8+ T cells by APCs was investigated. Confocal laser scanning microscopic analysis demonstrated that antigens coupled to the surface of unsaturated-fatty-acid-based liposomes received processing at both MHC class I and class II compartments, while most of the antigens coupled to the surface of saturated-fatty-acid-based liposomes received processing at the class II compartment. In addition, flow cytometric analysis demonstrated that antigens coupled to the surface of unsaturated-fatty-acid-liposomes were taken up by APCs even in a 4°C environment; this was not true of saturated-fatty-acid-liposomes. When two kinds of inhibitors, dimethylamiloride (DMA) and cytochalasin B, which inhibit pinocytosis and phagocytosis by APCs, respectively, were added to the culture of APCs prior to the antigen pulse, DMA but not cytochalasin B significantly reduced uptake of liposome-coupled antigens. Further analysis of intracellular trafficking of liposomal antigens using confocal laser scanning microscopy revealed that a portion of liposome-coupled antigens taken up by APCs were delivered to the lysosome compartment. In agreement with the reduction of antigen uptake by APCs, antigen presentation by APCs was significantly inhibited by DMA, and resulted in the reduction of IFN-γ production by antigen-specific CD8+ T cells. These results suggest that antigens coupled to the surface of liposomes consisting of unsaturated fatty acids might be pinocytosed by APCs, loaded onto the class I MHC processing pathway, and presented to CD8+ T cells. Thus, these liposome-coupled antigens are expected to be applicable for the development of vaccines that induce cellular immunity.  相似文献   

12.
The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.  相似文献   

13.
We describe a strategy for specific immunotherapy of myasthenia gravis (MG) based on genetic engineering of antigen presenting cells (APCs) to present the autoantigen acetylcholine receptor (AChR) and express the "warhead" Fas ligand (FasL). For transduction of APCs we prepared recombinant attenuated vaccinia virus vectors carrying the following three gene constructs: (i) AChR fused to LAMP1 to present AChR and target AChR-specific T cells; (ii) FasL to eliminate the targeted T cells; and (iii) truncated FADD to protect APCs from self-destruction by FasL. The engineered APCs effectively expressed the genes of interest and killed AChR-specific T cells in culture by the Fas/FasL pathway. T cells specific for an unrelated antigen were spared. Our in vitro demonstration that engineered APCs target and kill antigen-specific T cells represents a promising novel strategy for specific immunotherapy of MG and other autoimmune diseases.  相似文献   

14.
Human immunodeficiency virus (HIV)-specific CD4 T-cell responses, particularly to the envelope glycoproteins of the virus, are weak or absent in most HIV-infected patients. Although these poor responses can be attributed simply to the destruction of the specific CD4 T cells by the virus, other factors also appear to contribute to the suppression of these virus-specific responses. We previously showed that human monoclonal antibodies (MAbs) specific for the CD4 binding domain of gp120 (gp120(CD4BD)), when complexed with gp120, inhibited the proliferative responses of gp120-specific CD4 T-cells. MAbs to other gp120 epitopes did not exhibit this activity. The present study investigated the inhibitory mechanisms of the anti-gp120(CD4BD) MAbs. The anti-gp120(CD4BD) MAbs complexed with gp120 suppressed gamma interferon production as well as proliferation of gp120-specific CD4 T cells. Notably, the T-cell responses to gp120 were inhibited only when the MAbs were added to antigen-presenting cells (APCs) during antigen pulse; the addition of the MAbs after pulsing caused no inhibition. However, the anti-gp120(CD4BD) MAbs by themselves, or as MAb/gp120 complexes, did not affect the presentation of gp120-derived peptides by the APCs to T cells. These MAb/gp120 complexes also did not inhibit the ability of APCs to process and present unrelated antigens. To test whether the suppressive effect of anti-gp120(CD4BD) antibodies is caused by the antibodies' ability to block gp120-CD4 interaction, APCs were treated during antigen pulse with anti-CD4 MAbs. These treated APCs remained capable of presenting gp120 to the T cells. These results suggest that anti-gp120(CD4BD) Abs inhibit gp120 presentation by altering the uptake and/or processing of gp120 by the APCs but their inhibitory activity is not due to blocking of gp120 attachment to CD4 on the surface of APCs.  相似文献   

15.
MHC class I molecules present peptides derived from the ectodomains of endogenous transmembrane proteins; however, the processing of these Ags is incompletely understood. As model transmembrane Ags we investigated the processing of MHC-I-derived fusion proteins containing the N-terminally extended K(b)-restricted OVA epitope SIINFEKL in the extracytoplasmic domain. In TAP-deficient, nonprofessional APCs, the epitope was cleaved out of various sequence contexts and presented to T cells. Ag presentation was inhibited by acidophilic amines and inhibitors of the vacuolar proton pump, indicating processing in endosomes. Endosomal aspartic-type cathepsins, and to some extent also the trans-Golgi network protease furin, were involved in processing. Clathrin-dependent and independent internalization from the cell surface targeted MHC-I fusion proteins to early and late endosomes, where SIINFEKL/K(b) complexes were detected by immunofluorescence microscopy. Targeting of MHC-I fusion proteins to processing compartments was independent of sequence motifs in the cytoplasmic tail. Not only TAP-deficient cells, but also TAP-competent APCs used the vacuolar pathway for processing of MHC-I fusion proteins. Thus, endosomal processing of internalized endogenous transmembrane proteins represents a novel alternate pathway for the generation of MHC-I-binding peptides.  相似文献   

16.
To study the possible involvement of perforin (Pfp)- and/or Fas-dependent cytotoxicity pathways in a T cell-mediated negative regulation of Ig production, we used the T cell-induced Ig-allotype suppression model. T splenocytes from Igha/a mice, when neonatally transferred into histocompatible Igha/b F1 or Ighb/b congenic hosts, are intrinsically able to totally, specifically, and chronically suppress the production of IgG2a of the Ighb haplotype (IgG2ab). It has not been established whether the suppression effectors, which are anti-IgG2ab MHC class I-restricted CD8+ T cells, cytolyse IgG2ab+ B targets or whether they only silence Ig production. In this study, using T cells from Igha/a Pfp+/+ or Pfpo/o mice, the latter obtained by crossbreeding, and B cells from Ighb/b Fas+/+ or Faslpr/lpr (lymphoproliferation) mice in appropriate adoptive transfer models, we demonstrated that: 1) under blockage of the Pfp-mediated pathway, Igha/a T cells were still able to induce suppression against wild-type IgG2ab+ B cells, 2) IgG2ab+ B cells with impaired Fas expression were also subjected to suppression by WT Igha/a T splenocytes, and 3) the suppression establishment was totally inhibited when both Pfp- and Fas-dependent mechanisms were simultaneously blocked, i.e., when Igha/a Pfpo/o T cells were used to induce suppression against Ighb/b Faslpr/lpr B cells. These results provide the first demonstration of the existence of alternative or simultaneous use of the major cytotoxic mechanisms in a T cell-mediated down-regulation of an Ig production.  相似文献   

17.
Naturally occurring regulatory T cells (Tregs) maintain self tolerance by dominant suppression of potentially self-reactive T cells in peripheral tissues. However, the activation requirements, the temporal aspects of the suppressive activity, and mode of action of human Tregs are subjects of controversy. In this study, we show that Tregs display significant variability in the suppressive activity ex vivo as 54% of healthy blood donors examined had fully suppressive Tregs spontaneously, whereas in the remaining donors, anti-CD3/CD2/CD28 stimulation was required for Treg suppressive activity. Furthermore, anti-CD3/CD2/CD28 stimulation for 6 h and subsequent fixation in paraformaldehyde rendered the Tregs fully suppressive in all donors. The fixation-resistant suppressive activity of Tregs operated in a contact-dependent manner that was not dependent on APCs, but could be fully obliterated by trypsin treatment, indicating that a cell surface protein is directly involved. By add-back of active, fixed Tregs at different time points after activation of responding T cells, the responder cells were susceptible to Treg-mediated immune suppression up to 24 h after stimulation. This defines a time window in which effector T cells are susceptible to Treg-mediated immune suppression. Lastly, we examined the effect of a set of signaling inhibitors that perturb effector T cell activation and found that none of the examined inhibitors affected Treg activation, indicating pathway redundancy or that Treg activation proceeds by signaling mechanisms distinct from those of effector T cells.  相似文献   

18.
Human T cells can express MHC-class II products and were shown to be potential antigen-presenting cells. However, they are unable to capture the antigen and only antigens, which bind to T cell membranes such as the gp120 glycoprotein of HIV, are internalized, processed, and presented by T cells. To better understand the role of T cells as antigen-presenting cells, we established a method which overcomes the lack of antigen capture by T cells. Antigen (tetanus toxoid, TT) or an antigenic peptide of TT (residue 830-843, P2) was coupled to antibodies directed to T cell surface molecules such as CD2, CD4, CD8. Antibody/TT and antibody/P2 constructs stimulated P2-specific T cell clones in the absence of accessory cells, if the antibody recognized a T cell surface structure. Compared to the peptide alone, a 100-500 times lower molar concentration of the antibody/peptide construct was required to achieve a similar proliferative response. T cell stimulation via the constructs involved intracellular processing, as nonspecific, glutaraldehyde fixed T cell lines pulsed with the constructs could present the peptide and processing inhibitors like Leupeptin or Chloroquine inhibited the development of a proliferative response to the constructs. Our data underline the ability of T cells to function as antigen-processing and -presenting cells and show that antibody/antigen or antibody/peptide constructs are able to direct a certain antigen or peptide to a T cell. Antibody/peptide constructs may be interesting tools to better understand antigen processing and to study the consequences of antigen presentation by different cells.  相似文献   

19.
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the immune system. DCs present antigens to CD8 and CD4 T cells in the context of class I or II MHC. Recent evidence suggests that autophagy, a conserved intracellular degradation pathway, regulates class II antigen presentation. In vitro studies have shown that deletion of autophagy-related genes reduced antigen presentation by APCs to CD4 T cells. In vivo studies confirmed these findings in the context of infectious diseases. However, the relevance of autophagy-mediated antigen presentation in autoimmunity remains to be elucidated. Here, we report that loss of autophagy-related gene 7 (Atg7) in DCs ameliorated experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-mediated mouse model of multiple sclerosis, by reducing in vivo priming of T cells. In contrast, severity of hapten-induced contact hypersensitivity, in which CD8 T cells and NK cells play major roles, was unaffected. Administration of the autophagy-lysosomal inhibitor chloroquine, before EAE onset, delayed disease progression and, when administered after the onset, reduced disease severity. Our data show that autophagy is required in DCs for induction of EAE and suggest that autophagy might be a potential target for treating CD4 T cell-mediated autoimmune conditions.  相似文献   

20.
Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号