首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To define the stages in influenza haemagglutinin (HA)-mediated fusion the kinetics of fusion between cell pairs consisting of single influenza HA-expressing cells and single erythrocytes (RBC) which had been labelled with both a fluorescent lipid (Dil) in the membrane and a fluorescent solute (calcein) in the aqueous space have been monitored. It is shown that release of solute from the target cell occurs, following the formation of the hemi-fusion diaphragm. These results are discussed in terms of a model in which fusion peptide insertion into the target membrane induces lipid stalks, which results in the formation of a hemifusion diaphragm and a fusion pore. Bilayer expansion due to overproduction of these stalks can give rise to collateral damage of target membranes.  相似文献   

2.
To define the stages in influenza haemagglutinin (HA)-mediated fusion the kinetics of fusion between cell pairs consisting of single influenza HA-expressing cells and single erythrocytes (RBC) which had been labelled with both a fluorescent lipid (DiI) in the membrane and a fluorescent solute (calcein) in the aqueous space have been monitored. It is shown that release of solute from the target cell occurs, following the formation of the hemi-fusion diaphragm. These results are discussed in terms of a model in which fusion peptide insertion into the target membrane induces lipid stalks, which results in the formation of a hemifusion diaphragm and a fusion pore. Bilayer expansion due to overproduction of these stalks can give rise to collateral damage of target membranes.  相似文献   

3.
We have investigated the mechanism of cell fusion mediated by HA, the fusogenic hemagglutinin of the Influenza viral envelope. Single erythrocytes (RBCs) were attached to fibroblasts expressing the HA on their cell surface, and fusion of the paired cells was triggered by rapid acidification. The RBC membrane was stained with fluorescent lipid, and the fusion-induced escape of lipid into the fibroblast was observed by quantitative image analysis. At the same time, the formation of an aqueous connection (i.e., the fusion pore) between the two cells was monitored electrically. Within minutes after acidification, an electrical conductance between the two cells appeared abruptly as the fusion pore opened, and then increased gradually as the pore dilated. Later, fluorescent lipid diffused into the fibroblast, approaching equilibrium over the next 5-20 min. No lipid flux was seen while the pore conductance remained 0.5 nS or less. Evidently lipid flux requires a threshold pore size. Our finding suggests that the smallest and earliest fusion pores are surrounded by a ring of protein. A fusion pore expands by breaking this ring and recruiting lipid into its circumference.  相似文献   

4.
《The Journal of cell biology》1994,127(6):1885-1894
The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A retardation of lipid and aqueous dyes occurred during fusion pore fluctuations. The flux of aqueous dye depended on the size of the molecule. The lack of movement of aqueous dyes while total fusion pore conductance increased suggests that initial HA-triggered fusion events are characterized by the opening of multiple small pores: the formation of a "sieve".  相似文献   

5.
Cholesterol-specific interactions that affect membrane fusion were tested for using insect cells; cells that have naturally low cholesterol levels (< 4 mol %). Sf9 cells were engineered (HAS cells) to express the hemagglutinin (HA) of the influenza virus X-31 strain. Enrichment of HAS cells with cholesterol reduced the delay between triggering and lipid dye transfer between HAS cells and human red blood cells (RBC), indicating that cholesterol facilitates membrane lipid mixing prior to fusion pore opening. Increased cholesterol also increased aqueous content transfer between HAS cells and RBC over a broad range of HA expression levels, suggesting that cholesterol also favors fusion pore expansion. This interpretation was tested using both trans-cell dye diffusion and fusion pore conductivity measurements in cholesterol-enriched cells. The results of this study support the hypothesis that host cell cholesterol acts at two stages in membrane fusion: (1) early, prior to fusion pore opening, and (2) late, during fusion pore expansion.  相似文献   

6.
The fusion activity of chimeras of influenza virus hemagglutinin (HA) (from A/fpv/Rostock/34; subtype H7) with the transmembrane domain (TM) and/or cytoplasmic tail (CT) either from the nonviral, nonfusogenic T-cell surface protein CD4 or from the fusogenic Sendai virus F-protein was studied. Wild-type or chimeric HA was expressed in CV-1 cells by the transient T7-RNA-polymerase vaccinia virus expression system. Subsequently, the fusion activity of the expression products was monitored with red blood cells or ghosts as target cells. To assess the different steps of fusion, target cells were labeled with the fluorescent membrane label octadecyl rhodamine B-chloride (R18) (membrane fusion) and with the cytoplasmic fluorophores calcein (molecular weight [MW], 623; formation of small aqueous fusion pore) and tetramethylrhodamine-dextran (MW, 10,000; enlargement of fusion pore). All chimeric HA/F-proteins, as well as the chimera with the TM of CD4 and the CT of HA, were able to mediate the different steps of fusion very similarly to wild-type HA. Quite differently, chimeric proteins with the CT of CD4 were strongly impaired in mediating pore enlargement. However, membrane fusion and formation of small pores were similar to those of wild-type HA, indicating that the conformational change of the ectodomain and earlier fusion steps were not inhibited. Various properties of the CT which may affect pore enlargement are considered. We surmise that the hydrophobicity of the sequence adjacent to the transmembrane domain is important for pore dilation.  相似文献   

7.
We have monitored fusion between cell pairs consisting of a single human immunodeficiency virus–1 (HIV-1) envelope glycoprotein–expressing cell and a CD4+ target cell, which had been labeled with both a fluorescent lipid in the membrane and a fluorescent solute in the cytosol. We developed a new three-color assay to keep track of the cell into which fluorescent lipids and/or solutes are redistributed. Lipid and solute redistribution occur as a result of opening a lipid-permissive fusion pore and a solute-permissive fusion pore (FPS), respectively. A synthetic peptide (DP178) corresponding to residues 643–678 of the HIV-1LAI gp120-gp41 sequence (Wild, C.T., D.C. Shugars, T.K. Greenwell, C.B. McDanal, and T.J. Matthews. 1994. Proc. Natl. Acad. Sci. USA. 91:12676–12680) completely inhibited FPS at 50 ng/ml, whereas at that concentration there was 20–30% fusion activity measured by the lipid redistribution. The differences detected in lipid mixing versus contents mixing are maintained up to 6 h of coculture of gp120-41–expressing cells with target cells, indicating that DP178 can “clamp” the fusion complex in the lipid mixing intermediate for very long time periods. A peptide from the NH2-terminal of gp41, DP107, inhibited HIV-1LAI gp120-gp41–mediated cell fusion at higher concentrations, but with no differences between lipid and aqueous dye redistribution at the different inhibitor concentrations. The inhibition of solute redistribution by DP178 was complete when the peptide was added to the fusion reaction mixture during the first 15 min of coculture. We have analyzed the inhibition data in terms of a fusion pore dilation model that incorporates the recently determined high resolution structure of the gp41 core.  相似文献   

8.
While biological membrane fusion is classically defined as the leak-free merger of membranes and contents, leakage is a finding in both experimental and theoretical studies. The fusion stages, if any, that allow membrane permeation are uncharted. In this study we monitored membrane ionic permeability at early stages of fusion mediated by the fusogenic protein influenza hemagglutinin (HA). HAb2 cells, expressing HA on their plasma membrane, fused with human red blood cells, cultured liver cells PLC/PRF/5, or planar phospholipid bilayer membranes. With a probability that depended upon the target membrane, an increase of the electrical conductance of the fusing membranes (leakage) by up to several nS was generally detected. This leakage was recorded at the initial stages of fusion, when fusion pores formed. This leakage usually accompanied the "flickering" stage of the early fusion pore development. As the pore widened, the leakage reduced; concomitantly, the lipid exchange between the fusing membranes accelerated. We conclude that during fusion pore formation, HA locally and temporarily increases the permeability of fusing membranes. Subsequent rearrangement in the fusion complex leads to the resealing of the leaky membranes and enlargement of the pore.  相似文献   

9.
The mechanism of bilayer unification in biological fusion is unclear. We reversibly arrested hemagglutinin (HA)-mediated cell–cell fusion right before fusion pore opening. A low-pH conformation of HA was required to form this intermediate and to ensure fusion beyond it. We present evidence indicating that outer monolayers of the fusing membranes were merged and continuous in this intermediate, but HA restricted lipid mixing. Depending on the surface density of HA and the membrane lipid composition, this restricted hemifusion intermediate either transformed into a fusion pore or expanded into an unrestricted hemifusion, without pores but with unrestricted lipid mixing. Our results suggest that restriction of lipid flux by a ring of activated HA is necessary for successful fusion, during which a lipidic fusion pore develops in a local and transient hemifusion diaphragm.  相似文献   

10.
Fusion has been reported to occur in a variety of membrane systems in response to the application of certain electric currents to the medium (Zimmermann, U., 1982, Biochim. Biophys. Acta., 694:227-277). The application of a weak but continuous alternating current causes the membranes in suspension to become rearranged into the "pearl-chain" formation. Fusion can then be induced by one or more strong direct current pulses that cause pore formation. This results in the conversion of individual membranes in the "pearl-chain" formation to a single membrane with one or more hourglass constrictions that form lumens which connect the cytoplasmic compartments. As the diameter of the lumens increases, the overall membrane shape grows to one large sphere. To further characterize electric field-induced fusion, experiments were conducted using the erythrocyte ghost as a model membrane, and a new combination of electrical circuit and fusion chamber that is simpler and improved over previous systems. All odd- shaped ghosts (collapsed or partly collapsed spherical shapes, echinocytes, discocytes, and stomatocytes) in 30 mM phosphate buffer was first converted to spherocytes and then fused with increasing yields by increasing the number of pulses. After fusion, the lateral diffusion of a fluorescent lipid soluble label (Dil) from labeled to unlabeled membranes was observed to occur both with and without the appearance in phase-contrast optics of distinct communication (lumens) between cytoplasmic compartments of the fused membranes. Connections between cytoplasmic compartments, however, were unmistakable with the instant transfer of a fluorescent water-soluble label (fluorescein isothiocyanate-dextran) from labeled to unlabeled cytoplasmic compartments upon fusion. Although pulses still resulted in the lateral diffusion of Dil to unlabeled membranes, the presence of glycerol in the medium strongly reduced the yield of lumens observable by phase- contrast optics in fusion events. The presence of glycerol also inhibited the conversion of membranes to spherocytes, but did not inhibit the lateral diffusion of Dil from labeled to unlabeled membranes.  相似文献   

11.
Influenza hemagglutinin, the receptor-binding and membrane fusion protein of the virus, is a prototypic model for studies of biological membrane fusion in general. To elucidate the minimum number of hemagglutinin trimers needed for fusion, the kinetics of fusion induced by reconstituted vesicles of hemagglutinin was studied by using single-vesicle image analysis. The surface density of hemagglutinin fusion-activity sites on the vesicles was varied, while keeping the surface density of receptor-binding activity sites constant, by co-reconstitution of the fusogenic form of hemagglutinin, HA(1,2), and the non-fusogenic form, HA(0), at various HA(1,2):(HA(1,2) + HA(0)) ratios. The rate of fusion between the hemagglutinin vesicles containing a fluorescent lipid probe, octadecylrhodamine B, and red blood cell ghost membranes was estimated from the time distribution of fusion events of single vesicles observed by fluorescence microscopy. The best fit of a log-log plot of fusion rate versus the surface density of HA(1,2) exhibited a slope of 0.85, strongly supporting the hypothesis that single hemagglutinin trimers are sufficient for fusion. When only HA(1,2) (without HA(0)) was reconstituted on vesicles, the dependence of fusion rate on the surface density of HA(1,2) was distinct from that for the HA(1,2)-HA(0) co-reconstitution. The latter result suggested interference with fusion activity by hemagglutinin-receptor binding, without having to assume a fusion mechanism involving multiple hemagglutinin trimers.  相似文献   

12.
Time-resolved admittance measurements were used to follow formation of individual fusion pores connecting influenza virus hemagglutinin (HA)- expressing cells to planar bilayer membranes. By measuring in-phase, out-of-phase, and dc components of currents, pore conductances were resolved with millisecond time resolution. Fusion pores developed in stages, from small pores flickering open and closed, to small successful pores that remained open until enlarging their lumens to sizes greater than those of viral nucleocapsids. The kinetics of fusion and the properties of fusion pores were studied as functions of density of the fusion protein HA. The consequences of treating cell surfaces with proteases that do not affect HA were also investigated. Fusion kinetics were described by waiting time distributions from triggering fusion, by lowering pH, to the moment of pore formation. The kinetics of pore formation became faster as the density of active HA was made greater or when cell surface proteins were extensively cleaved with proteases. In accord with this faster kinetics, the intervals between transient pore openings within the flickering stage were shorter for higher HA density and more extensive cell surface treatment. Whereas the kinetics of fusion depended on HA density, the lifetimes of open fusion pores were independent of HA density. However, the lifetimes of open pores were affected by the proteolytic treatment of the cells. Faster fusion kinetics correlated with shorter pore openings. We conclude that the density of fusion protein strongly affects the kinetics of fusion pore formation, but that once formed, pore evolution is not under control of fusion proteins but rather under the influence of mechanical forces, such as membrane bending and tension.  相似文献   

13.
We have studied the fusion between voltage-clamped planar lipid bilayers and influenza virus infected MDCK cells, adhered to one side of the bilayer, using measurements of electrical admittance and fluorescence. The changes in currents in-phase and 90 degrees out-of- phase with respect to the applied sinusoidal voltage were used to monitor the addition of the cell membrane capacitance to that of the lipid bilayer through a fusion pore connecting the two membranes. When ethidium bromide was included in the solution of the cell-free side of the bilayer, increases in cell fluorescence accompanied tee admittance changes, independently confirming that these changes were due to formation of a fusion pore. Fusion required acidic pH on the cell- containing side and depended on temperature. For fusion to occur, the influenza hemagglutinin (HA) had to be cleaved into HA1 and HA2 subunits. The incorporation of gangliosides into the planar bilayers greatly augmented fusion. Fusion pores developed in four distinct stages after acidification: (a) a pre-pore, electrically quiescent stage; (b) a flickering stage, with 1-2 nS pores opening and closing repetitively; (c) an irreversibly opened stage, in which pore conductances varied between 2 and 100 nS and exhibited diverse kinetics; (d) a fully opened stage, initiated by an instantaneous, time- resolution limited, increase in conductance leveling at approximately 500 nS. The expansion of pores by stages has also been shown to occur during exocytosis in mast cells and fusion of HA-expressing cells and erythrocytes. We conclude that essential features of fusion pores are produced with proteins in just one of the two fusing membranes.  相似文献   

14.
Background information. Protein‐mediated merger of biological membranes, membrane fusion, is an important process. To investigate the role of fusogenic proteins in the initial size and dynamics of the fusion pore (a narrow aqueous pathway, which widens to finalize membrane fusion), two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the HA (haemagglutinin) of influenza X31. Results. The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human RBCs (red blood cells) upon acidification of the medium. A high‐time‐resolution electrophysiological study of fusion pore conductance revealed fundamental differences in (i) the initial pore conductance; pores created by HA were smaller than those created by GP64; (ii) the ability of pores to flicker; only HA‐mediated pores flickered; and (iii) the time required for pore formation; HA‐mediated pores took much longer to form after acidification. Conclusion. HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein.  相似文献   

15.
The data of Melikyan et al. (J. Gen. Physiol. 106:783, 1995) for the time required for the first measurable step of fusion, the formation of the first flickering conductivity pore between influenza hemagglutinin (HA) expressing cells and planar bilayers, has been analyzed using a new mass action kinetic model. The analysis incorporates a rigorous distinction between the minimum number of HA trimers aggregated at the nascent fusion site (which is denoted the minimal aggregate size) and the number of those trimers that must to undergo a slow essential conformational change before the first fusion pore could form (which is denoted the minimal fusion unit). At least eight (and likely more) HA trimers aggregated at the nascent fusion site. Remarkably, of these eight (or more) HAs, only two or three must undergo the essential conformational change slowly before the first fusion pore can form. Whether the conformational change of these first two or three HAs are sufficient for the first fusion pore to form or whether the remaining HAs within the aggregate must rapidly transform in a cooperative manner cannot be determined kinetically. Remarkably, the fitted halftime for the essential HA conformational change is roughly 10(4) s, which is two orders of magnitude slower than the observed halftime for fusion. This is because the HAs refold with distributed kinetics and because the conductance assay monitored the very first aggregate to succeed in forming a first fusion pore from an ensemble of hundreds or thousands (depending upon the cell line) of fusogenic HA aggregates within the area of apposition between the cell and the planar bilayer. Furthermore, the average rate constant for this essential conformational change was at least 10(7) times slower than expected for a simple coiled coil conformational change, suggesting that there is either a high free energy barrier to fusion and/or very many nonfusogenic conformations in the refolding landscape. Current models for HA-mediated fusion are examined in light of these new constraints on the early structure and evolution of the nascent fusion site. None completely comply with the data.  相似文献   

16.
Fusion pore formation in the haemagglutinin (HA)-mediated fusion is a culmination of a multistep process, which involves low-pH triggered refolding of HA and rearrangement of membrane lipid bilayers. This rearrangement was arrested or slowed down by either altering lipid composition of the membranes, or lowering the density of HA, and/ or temperature. The results suggest that fusion starts with the lateral assembly of activated HA into multimeric complexes surrounding future fusion sites. The next fusion stage involves hemifusion, i.e. merger of only contacting membrane monolayers. Lysophosphatidylcholine reversibly arrests fusion prior to this hemifusion stage. In the normal fusion pathway, hemifusion is transient and is not accompanied by any measurable transfer of lipid probes between the membranes. A temperature of 4degreeC stabilizes this `restricted hemifusion' intermediate. The restriction of lipid flow through the restricted hemifusion site is HA-dependent and can be released by partial cleaving of low pH-forms of HA with mild proteinase K treatment. Lipid effects indicate that fusion proceeds through two different lipid-involving intermediates, which are characterized by two opposite curvatures of the lipid monolayer. Hemifusion involves formation of a stalk, a local bent connection between the outer membrane monolayers. Fusion pore formation apparently involves bending of the inner membrane monolayers, which come together in hemifusion. To couple low pH-induced refolding of HA with lipid rearrangements, it is proposed that the extension of the alpha -helical coiled coil of HA pulls fusion peptides inserted into the HA-expressing membrane and locally bends the membrane into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements into a ring-like complex and causes the bulging of the host membrane into a dimple growing towards the target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion.  相似文献   

17.
Fusion pore formation in the haemagglutinin (HA)-mediated fusion is a culmination of a multistep process, which involves low-pH triggered refolding of HA and rearrangement of membrane lipid bilayers. This rearrangement was arrested or slowed down by either altering lipid composition of the membranes, or lowering the density of HA, and/or temperature. The results suggest that fusion starts with the lateral assembly of activated HA into multimeric complexes surrounding future fusion sites. The next fusion stage involves hemifusion, i.e. merger of only contacting membrane monolayers. Lysophosphatidylcholine reversibly arrests fusion prior to this hemifusion stage. In the normal fusion pathway, hemifusion is transient and is not accompanied by any measurable transfer of lipid probes between the membranes. A temperature of 4 degrees C stabilizes this 'restricted hemifusion' intermediate. The restriction of lipid flow through the restricted hemifusion site is HA-dependent and can be released by partial cleaving of low pH-forms of HA with mild proteinase K treatment. Lipid effects indicate that fusion proceeds through two different lipid-involving intermediates, which are characterized by two opposite curvatures of the lipid monolayer. Hemifusion involves formation of a stalk, a local bent connection between the outer membrane monolayers. Fusion pore formation apparently involves bending of the inner membrane monolayers, which come together in hemifusion. To couple low pH-induced refolding of HA with lipid rearrangements, it is proposed that the extension of the alpha-helical coiled coil of HA pulls fusion peptides inserted into the HA-expressing membrane and locally bends the membrane into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements into a ring-like complex and causes the bulging of the host membrane into a dimple growing towards the target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion.  相似文献   

18.
The chronological relation between the establishment of lipid continuity and fusion pore formation has been investigated for fusion of cells expressing hemagglutinin (HA) of influenza virus to planar bilayer membranes. Self-quenching concentrations of lipid dye were placed in the planar membrane to monitor lipid mixing, and time-resolved admittance measurements were used to measure fusion pores. For rhodamine-PE, fusion pores always occurred before a detectable amount of dye moved into an HA-expressing cell. However, with DiI in the planar membrane, the relationship was reversed: the spread of dye preceded formation of small pores. In other words, by using DiI as probe, hemifusion was clearly observed to occur before pore formation. For hemifused cells, a small pore could form and subsequently fully enlarge. In contrast, for cells that express a glycosylphosphatidylinositol-anchored ectodomain of HA, hemifusion occurred, but no fully enlarged pores were observed. Therefore, the transmembrane domain of HA is required for the formation of fully enlarging pores. Thus, with the planar bilayer membranes as target, hemifusion can precede pore formation, and the occurrence of lipid dye spread does not preclude formation of pores that can enlarge fully.  相似文献   

19.
The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.  相似文献   

20.
GPI-linked hemagglutinin (GPI-HA) of influenza virus was thought to induce hemifusion without pore formation. Cells expressing either HA or GPI-HA were bound to red blood cells, and their fusion was compared by patch-clamp capacitance measurements and fluorescence microscopy. It is now shown that under more optimal fusion conditions than have been used previously, GPI-HA is also able to induce fusion pore formation before lipid dye spread, although with fewer pores formed than those induced by HA. The GPI-HA pores did not enlarge substantially, as determined by the inability of a small aqueous dye to pass through them. The presence of 1,1'-dioctadecyl-3, 3,3',3'-tetramethylindocarbocyanine perchlorate or octadecylrhodamine B in red blood cells significantly increased the probability of pore formation by GPI-HA; the dyes affected pore formation to a much lesser degree for HA. This greater sensitivity of pore formation to lipid composition suggests that lipids are a more abundant component of a GPI-HA fusion pore than of an HA pore. The finding that GPI-HA can induce pores indicates that the ectodomain of HA is responsible for all steps up to the initial membrane merger and that the transmembrane domain, although not absolutely required, ensures reliable pore formation and is essential for pore growth. GPI-HA is the minimal unit identified to date that supports fusion to the point of pore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号