首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
U6 RNA genes from the trypanosomatids Crithidia fasciculata and Leptomonas seymouri have been isolated and sequenced. As in Trypanosoma brucei, the U6 RNA genes in both C. fasciculata and L. seymouri are arranged in close linkage with upstream tRNA genes. The U6 RNA sequences from C. fasciculata and L. seymouri deviate in five and three positions, respectively, from the published T. brucei sequence. Interestingly, both C. fasciculata U6 RNA genes carry a C-->T change at the second position of the ACAGAG hexanucleotide sequence, which is important for splicing function and has been considered phylogenetically invariable. A compensatory base change of the C. fasciculata spliced leader RNA at the highly conserved 5' splice site position +5, G-->A, suggests that an interaction between the 5' splice site region and U6 RNA recently proposed for the yeast cis-splicing system may also occur in trans splicing.  相似文献   

3.
A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids.  相似文献   

4.
5.
6.
Growth inhibition of Crithidia fasciculata by 4-nitroquinoline 1-oxide (NQO) was observed in defined and complex media at 28 C. Aromatic amino acids, cystein, and nicotinic acid, among several other substances, were ineffective in overcoming NQO toxicity. Dicoumarol and bovine albumin reversed NQO inhibition. While bovine albumin probably acted by the extra-cellular binding of NQO, dicoumarol inhibited the activity of DT-diaphorase, which reduces NQO to 4-hydroxyaminonitroquinoline 1-oxide (HAQO). The DT-diaphorase from C. fasciculata had the same characteristics as the enzyme from rat liver. The specific protection by dicoumarol against NQO inhibition suggests that HAQO is the active toxic substance for C. fasciculata.  相似文献   

7.
ABSTRACT. To develop molecular markers for lower trypanosmatids, we have examined the mini-exon gene repeats of 17 isolates that were classified as Crithidia by traditional methods. Representative repeats were amplified by polymerase chain reaction and the amplification products were cloned and used as hybridization probes against genomic DNA. Six hybridization groups of Crithidia were defined on the basis of the DNA blotting experiments. The three endosymbiont-bearing species ( C. deanei, C. desouzai and C. oncopelti ) and C. acanthocephali each belonged to single-member hybridization groups, while the C. fasciculata group contained additional named and undesignated species. The Crithidia lucilae thermophila probe hybridized to multiple undesignated isolates. The DNA sequence of the cloned products revealed that the specificity of the hybridization probes was due to substantial differences in the intron and the non-transcribed spacer regions. These data indicate substantial heterogeneity within the mini-exon gene locus of the taxon Crithidia .  相似文献   

8.
9.
Both prokaryotic and eukaryotic cells contain multiple forms of ribonuclease H, a ribonuclease that specifically degrades the RNA strand of RNA-DNA hybrids and which has been implicated in the processing of initiator RNAs and in the removal of RNA primers from Okazaki fragments. The Crithidia fasciculata RNH1 gene encodes an RNase H and was shown to be a single-copy gene in this diploid trypanosomatid. The RNH1 gene has been disrupted by targeted gene disruption using hygromycin or G418 drug-resistance cassettes. Major active forms of RNase H (38 and 45 kDa) were observed on activity gels of extracts of wild-type cells or cells in which one allele of RNH1 was disrupted. Both the 38 and 45 kDa activities were absent in extracts of cells in which both alleles of RNH1 were disrupted indicating that both forms of the C.fasciculata RNase H are encoded by the RNH1 gene.  相似文献   

10.
The surface charge of Crithidia fasciculata and Crithidia luciliae was analysed by measurement of the zeta-potential and labelling of the protozoan surface with cationized ferritin particles. Both trypanosomatids have a net negative surface charge, with a zeta-potential of -10.39 mV and -11.12 mV for C. luciliae and C. fasciculata, respectively. Enzyme treatment showed that phosphate groups, but not sialic acid, significantly contributed to the negative surface charge. Lectin-induced agglutination was used to analyse the presence of surface-exposed carbohydrates in C. fasciculata and C. luciliae. The cells did not agglutinate when incubated in the presence of lectins which recognized L-fucose, N-acetyl-D-glucosamine and sialic acid. However, lectins which bind to N-acetyl-D-galactosamine, D-galactose and D-mannose agglutinated both protozoa.  相似文献   

11.
DNA from Kinetoplastida contains the unusual modified base beta-D-glucosyl(hydroxymethyl)uracil, called J. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes in Trypanosoma brucei. We have now identified a protein in nuclear extracts of bloodstream stage T.brucei that binds specifically to J-containing duplex DNA. J-specific DNA binding was also observed with extracts from the kinetoplastids Crithidia fasciculata and Leishmania tarentolae. We purified the 90 kDa C.fasciculata J-binding protein 50 000-fold and cloned the corresponding gene from C.fasciculata, T.brucei and L.tarentolae. Recombinant proteins expressed in Escherichia coli demonstrated J-specific DNA binding. The J-binding proteins show 43-63% identity and are unlike any known protein. The discovery of a J-binding protein suggests that J, like methylated cytosine in higher eukaryotes, functions via a protein intermediate.  相似文献   

12.
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.  相似文献   

13.
Trypanothione reductase belongs to the family of flavoprotein disulphide oxidoreductases that include glutathione reductases, dihydrolipoamide dehydrogenases and mercuric reductases. Trypanothione reductase and its substrate, trypanothione disulphide, are unique to parasitic trypanosomatids responsible for several tropical diseases. The crystal structure of the enzyme from Crithidia fasciculata is currently under investigation as an aid in the design of selective inhibitors with a view to producing new drugs. We report here the cloning and sequencing of the genes for trypanothione reductase from C. fasciculata and Trypanosoma brucei. Alignment of the deduced amino acid sequences with 21 other members of this family provides insight into the role of certain amino acid residues with respect to substrate specificity and catalytic mechanism as well as conservation of certain elements of secondary structure.  相似文献   

14.
Interestingly, there is a major difference in turnover rate between ornithine decarboxylases (ODCs) from various trypanosomatids. ODCs from Trypanosoma brucei and Leishmania donovani are both stable proteins, whereas ODC from Crithidia fasciculata is a metabolically unstable protein in the parasite. C. fasciculata ODC is also rapidly degraded in mammalian systems, whereas the closely related L. donovani ODC is not. The degradation of C. fasciculata ODC in the mammalian systems is shown to be dependent on a functional 26 S proteasome. However, in contrast to the degradation of mammalian ODC, the degradation of C. fasciculata ODC does not involve antizyme. Instead, it appears the degradation of C. fasciculata ODC may be associated with poly-ubiquitination of the enzyme.  相似文献   

15.
The family of the RACK molecules (receptors for activated C kinases) are present in all the species studied so far. In the genus Leishmania, these molecules also induce a strong immune reaction against the infection. We have cloned and characterised the gene that encodes the RACK analogue from the parasite trypanosomatid Crithidia fasciculata (CACK). The molecule seems to be encoded by two genes. The sequence analysis of the cloned open reading frame indicates the existence of a high degree of conservation not only with other members of the Trypanosomatidae but also with mammalians. The study of the protein kinase C phosphorylation sites shows the presence of three of them, shared with the mammalian species, additional to those present in the other protozoa suggesting a certain phylogenetic distance between the protozoon Crithidia fasciculata and the rest of the Trypanosomatidae. The CACK-encoded polypeptide shows an additional sequence of four amino acids at the carboxy-terminal end, which produces a different folding of the fragment with the presence of an alpha-helix instead of the beta-sheet usual in all the other species studied. A similar result is elicited at the amino-terminal end by the change of three amino acid residues. The immunolocalisation experiments show that the CACK displays a pattern with a distribution mainly at the plasma membrane, different from that of the related Leishmania species used as control, that displays a distribution close to the nucleus. Altogether, the data suggest that the existence of the structural differences found may have functional consequences.  相似文献   

16.
17.
1. The ADP plus Pi-stimulated oxidation of succinate by mitochondria from the insect trypanosomatid Crithidia fasciculata was maximally inhibited (64%) by suramin at a concentration (60 microM) which did not affect the electron transport uncoupled by FCCP. Inhibition of the latter required a considerably higher concentration of the drug, 50% inhibition being attained at about 0.8 mM. 2. ATP synthesis by mitochondrial particles was inhibited by suramin, 50% inhibition being attained at about 50 microM. This inhibition was strictly competitive towards ADP, but it was not linearly competitive, since a secondary plot of apparent Km values vs concentration of the drug was strongly concave upwards. 3. The FCCP-stimulated ATPase activity of the mitochondrial particles was completely abolished either by oligomycin (20 micrograms/ml) or by 200 microM suramin. 4. The results suggest that oxidative phosphorylation may be a primary target for the trypanocide effect of suramin on organisms having, like C. fasciculata, a well-developed respiratory chain.  相似文献   

18.
Newly replicated duplex DNA minicircles of trypanosomal kinetoplast DNA are nicked in both their monomeric and catenated topological states, whereas mature ones are covalently sealed. The possibility that nicking may play a role during kinetoplast DNA replication by affecting the topological interconversions of monomeric DNA minicircles and catenane networks was studied here in vitro using Crithidia fasciculata DNA topoisomerase. An enzyme that catalyzes the nicking of duplex DNA circles has been purified to apparent homogeneity from C. fasciculata cell extracts. The native enzyme has a sedimentation coefficient of 6.8 S and was found to be a dimer with a protomer Mr = 60,000. Nicking of kinetoplast DNA networks by the purified enzyme inhibits their decatenation by the Crithidia DNA topoisomerase but has no effect on the catenation of monomeric DNA minicircles into networks. This differential effect on decatenation versus catenation is specific to the purified nicking enzyme. Random nicking of interlocked DNA minicircles has no detectable effect on the reversibility of the topological reaction. The potential role of Crithidia nicking enzyme in the replication of kinetoplast DNA networks in trypanosomatids is discussed.  相似文献   

19.
Cytochrome c reductase purified from the trypanosomatid Crithidia fasciculata retained antimycin A sensitivity and catalyzed the reduction of horse heart ferricytochrome c in the presence of reduced coenzyme Q10. The complex contained heme b and heme c1 in a ratio of 2:1. Nine major protein bands ranging in size from 55.3 to approximately 12.8 kDa were resolved by SDS-polyacrylamide gel electrophoresis. A 31.6-kDa protein was identified as cytochrome c1 by the presence of a covalently attached heme. A red shift in the alpha-absorbance band of the cytochrome c1 absolute absorbance spectrum, difference absorbance spectrum, and pyridine ferrohemochrome absorbance spectrum suggested that the heme prosthetic group of C. fasciculata cytochrome c1 is bound to the apoprotein through only one thioether bond. A fragment of the cytochrome c1 gene was amplified from C. fasciculata, Trypanosoma brucei, Leishmania tarentolae, and Bodo caudatus. The deduced heme binding site sequence of each of these kinetoplastid species, Phe-Ala-Pro-Cys-His, contains a phenylalanine rather that a cysteine at the first position so that only one thioether bond can be formed between heme and apoprotein. This phenylalanine substitution and the presence of a conserved proline in the sequence may represent compensatory changes that are necessary for optimal interaction of the cytochromes c1 with the atypical cytochromes c of these species.  相似文献   

20.
1. At the lowered concentrations of 0.5 mM ATP and 1.5 mM MgCl2, 2.0 mM UTP, UDP and UMP inhibited the activity of Crithidia fasciculata carbamoyl-phosphate synthetase II by about 65, 80 and 40% respectively. 2. The result suggests that feedback inhibition of the activity by uridine nucleotides is a mechanism of regulation of the de novo pyrimidine biosynthetic pathway in C. fasciculata. 3. ADP, AMP and CDP inhibited the activity (about 70, 40 and 40%). 4. Excess Mg2+ at around 1 mM, relative to the ATP concentration, was required for the maximum activity. 5. 5-Phosphoribosyl 1-pyrophosphate had no significant effect on the activity under various conditions examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号