首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasions of non‐indigenous species into natural communities are currently rated as one of the most important threats to biodiversity. Particularly exotic ecosystem engineers such as earthworms potentially have profound impacts on community assembly and functioning. We investigated the impact of invasion by the lumbricid earthworms into an aspen forest of the Canadian Rocky Mountains on soil organic matter, microorganisms and microarthropod communities. Building on the results of previous studies in this forest, we expected positive effects of Lumbricus terrestris middens and negative effects of Octolasion tyrtaeum on soil biota (increase and decrease in soil nutrient concentrations, microbial parameters and soil microarthropod density and diversity, respectively). Further, we expected that earthworm effects change with time. Combined results of previous and the present study suggest a wavelike colonization pattern for Dendrobaena octaedra and O. tyrtaeum and that indeed the impact of earthworms on soil biota changed with time, likely due to changes in earthworm density. Unexpectedly, L. terrestris middens neither affected soil abiotic nor soil biotic properties. By contrast and in contrast to our hypothesis, carbon and nitrogen concentration and C‐to‐N ratio in deeper soil layers increased in presence of O. tyrtaeum, thereby likely enhancing nutrient availability for soil microorganisms and microarthropods. Even though the density of this endogeic species was rather low, presence of O. tyrtaeum resulted in increased densities of a number of microarthropod taxa and increased microarthropod diversity. The results suggest that at low density, invasive ecosystem engineers, such as O. tyrtaeum, cause disturbances of intermediate strength thereby beneficially affecting soil microorganisms and most microarthropods. This contrasts earlier effects during the wavelike invasion of O. tyrtaeum into the aspen forest when densities of O. tyrtaeum were high resulting in generally detrimental effects on soil biota. The results emphasize the nonlinearity of earthworm effects on abiotic and biotic soil properties and call for further long‐term investigations.  相似文献   

2.
王笑  王帅  滕明姣  林小芬  吴迪  孙静  焦加国  刘满强  胡锋 《生态学报》2017,37(15):5146-5156
不同生态型蚯蚓的取食偏好和生境有所差异,因此蚯蚓的生态型差异可能关乎其对土壤性质的不同影响;有关不同生态型蚯蚓对土壤性质尤其是微生物学性质影响的研究有助于了解蚯蚓生态功能的作用机制。在野外调控试验的第4年采集土壤,研究了牛粪混施和表施处理下内层种威廉腔环蚓(Metaphire guillelmi)和表层种赤子爱胜蚓(Eisenia foetida)对设施菜地土壤微生物群落结构和主要理化性质的影响。结果表明,土壤微生物群落结构同时受到蚯蚓种类和牛粪施用方式的影响。牛粪表施时,两种蚯蚓均显著降低了菌根真菌、真菌生物量和原生动物生物量(P0.05);牛粪混施时,不同蚯蚓的影响有所差异,威廉腔环蚓明显增加了菌根真菌、真菌生物量和放线菌生物量,而赤子爱胜蚓的作用不明显。此外,两种蚯蚓均提高了土壤孔隙度、团聚体稳定性和土壤p H、矿质氮以及微生物生物量碳氮水平,但提高幅度取决于蚯蚓种类和牛粪施用方式。冗余分析表明蚯蚓影响下土壤微生物群落结构的变化与团聚体稳定性、p H、速效磷、矿质氮呈正相关,而与土壤容重呈负相关。  相似文献   

3.
Effects of Collembola (Heteromurus nitidus and Onychiurus scotarius) and earthworms (Aporrectodea caliginosa and Octolasion tyrtaeum) on the growth of two plant species from different functional groups (Poa annua and Trifolium repens), and on the development of aphids (Myzus persicae) were investigated in a laboratory experiment lasting 20 weeks. Using soil from a fallow site which had been set aside for about 15 years, we expected that nitrogen would be of limited supply to plants and hypothesized that the soil animals studied, particularly earthworms, would increase nutrient availability to plants and thereby also modify aphid reproduction and development. Plant growth was modified strongly by the presence of soil animals. Earthworms caused a more than twofold increase in shoot and root mass of P. annua but increased that of T. repens by only 18% and 6%, respectively. However, earthworms neither affected plant shoot/root ratio nor the nitrogen concentration in plant tissue. In contrast, the presence of Collembola caused a reduction in plant biomass particularly that of P. annua roots, but plant tissue nitrogen concentration was increased, although only slightly. Aphid reproduction on T. repens was lowered in the presence of Collembola on average by 45% but on P. annua increased by a factor of about 3. It is concluded that Collembola decrease aphid reproduction on more palatable host plants like T. repens but increase that on less palatable ones like P. annua. Earthworm presence also affected aphid reproduction but the effect was less consistent than that of Collembola. In the presence of earthworms, aphid reproduction was in one experimental period increased by some 70%. Earthworms also modified the numbers of Collembola and their vertical distribution in experimental chambers. Exploitation of deeper soil layers by H. nitidus was increased but, generally, O. scotarius numbers were reduced whereas those of H. nitidus increased in earthworm treatments. The presence of Collembola also influenced earthworm body mass during the experiment. In general it declined, but in the presence of Collembola loss of body mass of A. caliginosa was more pronounced. We conclude that inhibiting effects between Collembola and earthworms resulted from the use of a common resource, litter material rich in nitrogen. This is supported by the higher C/N ratio of the litter material in the presence of earthworms and Collembola by the end of the experiment. Effects of soil invertebrates like Collembola and earthworms on plant performance and aphid development are assumed to be modified by complex direct and indirect interactions among soil animal groups. Received: 6 July 1998 / Accepted: 1 March 1999  相似文献   

4.
The anthropogenic spread of exotic ecosystem engineers profoundly impacts native ecosystems. Exotic earthworms were shown to alter plant community composition of the understory of deciduous forests previously devoid of earthworms. We investigated the effect of two exotic earthworm species (Lumbricus terrestris L. and Octolasion tyrtaeum Savigny) belonging to different ecological groups (anecic and endogeic) on the emergence of plants from the seed bank of a northern North American deciduous forest using the seedling emergence method. We hypothesized that (1) exotic earthworms change the seedling emergence from the plant seed bank, (2) L. terrestris increases the emergence of plant seedlings of the deeper soil layer but decreases that of the upper soil layer due to plant seed burial, and (3) O. tyrtaeum decreases plant seedling emergence due the damage of plant seeds. Indeed, exotic earthworms altered the emergence of plant seedlings from the seed bank and the functional composition of the established plant seedlings. Surprisingly, although L. terrestris only marginally affected seedling emergence, O. tyrtaeum changed the emergence of native plant species from the seed bank considerably. In particular, the number of emerging grass and herb seedlings were increased in the presence of O. tyrtaeum in both soil layers. Moreover, the impacts of earthworms depended on the identity of plant functional groups; herb species benefited, whereas legumes suffered from the presence of exotic earthworms. The results highlight the strong effect of invasive belowground ecosystem engineers on aboveground ecosystem characteristics and suggest fundamental changes of ecosystems by human-spread earthworm species.  相似文献   

5.
European earthworms are colonizing worm-free hardwood forests across North America. Leading edges of earthworm invasion in forests of northern Minnesota provide a rare opportunity to document changes in soil characteristics as earthworm invasions are occurring. Across leading edges of earthworm invasion in four northern hardwood stands, increasing total earthworm biomass was associated with rapid disappearance of the O horizon. Concurrently, the thickness, bulk density and total soil organic matter content of the A horizon increased, and it’s percent organic matter and fine root density decreased. Different earthworm species assemblages influenced the magnitude and type of change in these soil parameters. Soil N and P availability were lower in plots with high earthworm biomass compared to plots with low worm biomass. Decreases in soil nitrogen availability associated with high earthworm biomass were reflected in decreased foliar nitrogen content for Carex pensylvanica, Acer saccharum and Asarum canadense but increased foliar N for Athyrium felix-femina. Overall, high earthworm biomass resulted in increased foliar carbon to nitrogen ratios. The effects of earthworm species assemblages on forest soil properties are related to their feeding and burrowing habits in addition to effects related to total biomass. The potential for large ecosystem consequences following exotic earthworm invasion has only recently been recognized by forest ecologists. In the face of rapid change and multiple pressures on native forest ecosystems, the impacts of earthworm invasion on forest soil structure and function must be considered.  相似文献   

6.
Earthworms increase growth of most plant species through a number of poorly investigated mechanisms. We tested the hypothesis that earthworm modifications of soil structure and the resulting changes in water availability to plants explain this positive effect. Addition of endogeic earthworms Millsonia anomala induced a 40% increase in shoot biomass production and a 13% increase in CO2 assimilation rate of well watered rice plants grown in pots. Conversely, when plants were subjected to water deficit, presence of earthworms had no effect on shoot biomass production and a negative impact on CO2 assimilation rate (−21%). Early stomatal closure in presence of earthworms indicated lower water availability. The hypothesis that earthworms improve plant biomass production through soil physical structure modification was thus rejected. Three hypotheses were tested to explain this decrease in water availability: (i) a decrease in soil water retention capacity, (ii) an increase in evaporation from the soil or/and (iii) an increase in plant transpiration. Results showed that earthworms significantly reduced soil water retention capacity by more than 6%, but had no effect on evaporation rate. Water losses through transpiration were greater in the presence of earthworms when the soil was maintained at field capacity, but this was not the case under drought conditions. This experiment showed that the endogeic compacting earthworm M. anomala significantly increased plant photosynthesis by an undetermined mechanism under well-watered conditions. However, photosynthesis was reduced under drought conditions due to reduced soil water retention capacity.  相似文献   

7.
Interactions among protozoa (mixed cultures of ciliates, flagellates and naked amoebae), bacteria-feeding nematodes (Pellioditis pellio Schneider) and the endogeic earthworm species Aporrectodea caliginosa (Savigny) were investigated in experimental chambers with soil from a beechwood (Fagus sylvatica L.) on limestone. Experimental chambers were planted with the grass Hordelymus europeaus L. (Poaceae) and three compartments separated by 45-m mesh were established: rhizosphere, intermediate and non-rhizosphere. The experiment lasted for 16 weeks and the following parameters were measured at the end of the experiment: shoot and root mass of H. europaeus, carbon and nitrogen content in shoots and roots, density of ciliates, amoebae, flagellates and nematodes, microbial biomass (SIR), basal respiration, streptomycin sensitive respiration, ammonium and nitrate contents, phosphate content of soil compartments. In addition, leaching of nutrients (nitrogen and phosphorus) and leachate pH were measured at regular intervals in leachate obtained from suction cups in the experimental chambers. Protozoa stimulated the recovery of nitrifying bacteria following defaunation (by chloroform fumigation) and increased nitrogen losses as nitrate in leachate. In contrast, protozoa and nematodes reduced leaching of phosphate, an effect ascribed to stimulation of microbial growth early in the experiment. Earthworms strongly increased the amount of extractable mineral nitrogen whereas it was strongly reduced by protozoa and nematodes. Both protozoa and nematodes reduced the stimulatory effect of earthworms on nitrogen mineralization. Microbial biomass, basal respiration, and numbers of protozoa and nematodes increased in the vicinity of the root. Protozoa generally caused a decrease in microbial biomass whereas nematodes and earthworms reduced microbial biomass only in the absence of protozoa. None of the animals studied significantly affected basal respiration, but specific respiration of microorganisms (O2 consumption per unit biomass) was generally higher in animal treatments. The stimulatory effect of nematodes and earthworms, however, occurred only in the absence of protozoa. The sensitivity of respiration to streptomycin suggested that protozoa selectively grazed on bacterial biomass but the bacterial/fungal ratio appeared to be unaffected by grazing of P. pellio. Earthworms reduced root biomass of H. europaeus, although shoot biomass remained unaffected, and concentrations of nitrogen in shoots and particularly in roots were strongly increased by earthworms. Both nematodes and protozoa increased plant biomass, particularly that of roots. This increase in plant biomass was accompanied by a marked decrease in nitrogen concentrations in roots and to a lesser extent in shoots. Generally, the effects of protozoa on plant growth considerably exceeded those of nematodes. It is concluded that nematodes and protozoa stimulated plant growth by non-nutritional effects, whereas the effects of earthworms were caused by an increase in nutrient supply to H. europaeus.  相似文献   

8.
Earthworms and plants greatly affect belowground properties; however, their combined effects are more attractive based on the ecosystem scale in the field condition. To address this point, we manipulated earthworms (exotic endogeic species Pontoscolex corethrurus) and plants (living plants [native tree species Evodia lepta] and artificial plants) to investigate their combined effects on soil microorganisms, soil nutrients, and soil respiration in a subtropical forest. The manipulation of artificial plants aimed to simulate the physical effects of plants (e.g., shading and interception of water) such that the biological effects of plants could be evaluated separately. We found that relative to the controls, living plants but not artificial plants significantly increased the ratio of fungal to bacterial phospholipid fatty acids (PLFAs) and fungal PLFAs. Furthermore, earthworms plus living plants significantly increased the soil respiration and decreased the soil NH4+‐N, which indicates that the earthworm effects on the associated carbon, and nitrogen processes were greatly affected by living plants. The permutational multivariate analysis of variance results also indicated that living plants but not earthworms or artificial plants significantly changed the soil microbial community. Our results suggest that the effects of plants on soil microbes and associated soil properties in this study were largely explained by their biological rather than their physical effects.  相似文献   

9.
North America is home to both native and invasive earthworms acting as ecosystem engineers as they build burrows that can serve as habitat for other species or otherwise alter soil structure, affecting nutrient cycling and other ecosystem processes. Here I determine where and what earthworm species commonly occur in my study area, and compare effects of native and invasive earthworms on the common woodland salamander, Plethodon cinereus, in field surveys and laboratory experiments. The native earthworm Eisenoides carolinensis was the most common earthworm, followed by two invasive species Dendrobaena octaedra and Octolasion tyrtaeum. The presence of O. tyrtaeum was associated with a narrower O-horizon (i.e., organic layer in the soil). Using structural equation modeling to explore direct and indirect pathways of these three most common earthworm species on salamanders, I found O. tyrtaeum occurrence was negatively correlated with nighttime salamander counts, a proxy for total salamander numbers, mediated by negative effects on O-horizon depth and microinvertebrate numbers. In the laboratory, O. tyrtaeum and D. octaedra consumed more leaf litter per gram of earthworm per day than the native E. carolinensis. However, salamanders consumed earthworms and used burrows of all native and invasive species of earthworms similarly. The potential for negative indirect effects of the invasive earthworm O. tyrtaeum on P. cinereus was demonstrated both in the field and laboratory, highlighting that seemingly small differences between native and invasive ecosystem engineers have the potential to significantly alter the effects of these closely related native and invasive organisms.  相似文献   

10.
We analyzed soil organic matter distribution and soil solution chemistry in plots with and without earthworms at two sugar maple (Acer saccharum)–dominated forests in New York State, USA, with differing land-use histories to assess the influence of earthworm invasion on the retention or loss of soil carbon (C) and nitrogen (N) in northern temperate forests. Our objectives were to assess the influence of exotic earthworm invasion on (a) the amount and depth distribution of soil C and N, (b) soil 13C and 15N, and (c) soil solution chemistry and leaching of C and N in forests with different land-use histories. At a relatively undisturbed forest site (Arnot Forest), earthworms eliminated the thick forest floor, decreased soil C storage in the upper 12 cm by 28%, and reduced soil C:N ratios from 19.2 to 15.3. At a previously cultivated forest site with little forest floor (Tompkins Farm), earthworms did not influence the storage of soil C or N or soil C:N ratios. Earthworms altered the stable isotopic signature of soil at Arnot Forest but not at Tompkins Farm; the alteration of stable isotopes indicated that earthworms significantly increased the loss of forest floor C but not N from the soil profile at Arnot Forest. Nitrate (NO3) concentrations in tension and zero-tension lysimeters were much greater at Tompkins Farm than Arnot Forest, and earthworms increased NO3 leaching at Tompkins Farm. The results suggest that the effect of earthworm invasion on the distribution, retention, and solution chemistry of soil C and N in northern temperate forests may depend on the initial quantity and quality of soil organic matter at invaded sites.  相似文献   

11.
Earthworms are keystone detritivores that can influence primary producers by changing seedbed conditions, soil characteristics, flow of water, nutrients and carbon, and plant–herbivore interactions. The invasion of European earthworms into previously earthworm-free temperate and boreal forests of North America dominated by Acer, Quercus, Betula, Pinus and Populus has provided ample opportunity to observe how earthworms engineer ecosystems. Impacts vary with soil parent material, land use history, and assemblage of invading earthworm species. Earthworms reduce the thickness of organic layers, increase the bulk density of soils and incorporate litter and humus materials into deeper horizons of the soil profile, thereby affecting the whole soil food web and the above ground plant community. Mixing of organic and mineral materials turns mor into mull humus which significantly changes the distribution and community composition of the soil microflora and seedbed conditions for vascular plants. In some forests earthworm invasion leads to reduced availability and increased leaching of N and P in soil horizons where most fine roots are concentrated. Earthworms can contribute to a forest decline syndrome, and forest herbs in the genera Aralia, Botrychium, Osmorhiza, Trillium, Uvularia, and Viola are reduced in abundance during earthworm invasion. The degree of plant recovery after invasion varies greatly among sites and depends on complex interactions with soil processes and herbivores. These changes are likely to alter competitive relationships among plant species, possibly facilitating invasion of exotic plant species such as Rhamnus cathartica into North American forests, leading to as yet unknown changes in successional trajectory.  相似文献   

12.
We compared the biogeochemical cycling of phosphorus (P) in northern hardwood forest plots invaded by exotic earthworms versus adjacent uninvaded reference plots. In three of the six pairs of plots, earthworm invasion resulted in significantly more total P in the upper 12 cm of soil. The finding of increased amounts of unavailable and occluded inorganic P forms in the invaded plots suggests that earthworm activity mobilized unweathered soil particles from deeper layers of the soil, increasing the stocks of total P in surface soils. In two pairs of plots, the earthworm-invaded soils had less total P than the reference soils. In these plots, earthworm activity resulted in augmented rates of P cycling and alteration of the physical structure of the soil that increased loss of P in leaching water, reducing the total amount of P. We hypothesize that the different effects of earthworm invasion on the soil P cycle result from unique characteristics of the ecological groups of earthworms dominating each site. The invaded plots with increased total P were dominated by the anecic species Lumbricus terrestris, a large earthworm that constructs deep, vertical burrows and is effective at moving soil materials from and to deeper layers of the profile. In contrast, the earthworm-invaded plots where the total P in the surface soil decreased were dominated by the epi-endogeic species L. rubellus, which feeds and lives in the upper organic layers of the soil. In these plots, earthworms significantly increased the amount of readily exchangeable P in the soil, increasing the loss of this element in leaching water.  相似文献   

13.
The invasion of North American forests by exotic earthworms is producing profound ecosystem changes, such as alterations in soil nutrient cycling, and redistribution and loss of soil organic matter. However, the present and future extent of these invasions is difficult to evaluate without a better understanding of the factors that control the distribution and abundance of earthworms in previously non-invaded habitats. In this study, the species composition and short-term dynamics of three exotic earthworm invasion fronts were studied at a northern hardwood forest in south-central New York State (USA). Belt transects were established at each of the three locations to sample from earthworm-invaded areas through transition zones and into invasion front areas. Lumbricus rubellus, L. terrestrisandOctolasion tyrtaeum were the most common species, but their distribution was not homogeneous along the transects. Whereas, L. rubellus was the only species with relatively high adult densities at transition zones and invasion fronts, L. terrestris and O. tyrtaeum occurred mostly in the heavily earthworm-invaded areas and were rare at the invasion fronts. The density of earthworms along the transects decreased by 60–87 from June 2001 to October 2002 and then recovered in 2003 to values similar to those of 2001. This decrease was apparently caused by reduced recruitment of immature earthworms, probably related to the severe drought periods that the study area experienced in 2001 and 2002. Our data suggest that climate and topography, through their effects on soil moisture patterns, can be critical factors controlling the distribution and spread of exotic earthworms in previously non-invaded habitats.  相似文献   

14.
接种蚯蚓对秸秆还田土壤碳、氮动态和作物产量的影响   总被引:32,自引:1,他引:31  
通过为期 2年的小区 (2 .8m× 1.0m)试验 ,研究了旱作水稻 小麦轮作条件下接种蚯蚓对施用玉米秸秆 (第一季用量 15 0 0g·m-2 ,以后各季为 75 0g·m-2 )农田土壤碳、氮动态和作物产量的影响 .结果表明 ,接种 10条·m-2 或 2 0条·m-2 环毛蚓 (Pheretimasp .)对土壤有机碳和全氮含量无显著影响 ,蚯蚓活动未造成土壤C库的衰减 ,土壤碳、氮基本维持平衡 .接种蚯蚓处理土壤N的矿化作用增强 ,矿质N含量提高 ,NO3 - N含量增加 ,而且稻季比麦季增加更为明显 .接种蚯蚓在稻、麦季均能提高微生物量碳、氮含量 ,蚯蚓具有扩大土壤微生物量N库和促进有机N矿化的双重作用 .这种作用在有效C源供应丰富的作物生长发育旺盛期更为明显 .接种蚯蚓对旱作水稻和小麦有一定的增产作用 ,其中水稻的增产幅度达 9.3% ,小麦为 5 .1% .接种蚯蚓后土壤容重明显降低 ,孔隙度显著增加 .蚯蚓在保持土壤C库平衡的同时 ,对于促进秸秆有机肥N素养分的再循环和作物生产力的提高具有重要的生态学意义 .  相似文献   

15.
Although microorganisms are largely responsible for organic matter decomposition, earthworms may also affect the rates of decomposition directly by feeding on and digesting organic matter and microorganisms, or indirectly affect them through their interactions with the microorganisms, basically involving stimulation or depression of the microbial populations. We tested the general hypothesis that microbial populations, and especially fungi, are enhanced by earthworm activity, and also whether earthworms are able to modify the biodiversity of microbial populations, and its relation to the function of the system. In addition, we examined the metabolic quotient and the effect of labile organic C to assess the relationships between earthworm and microbes. We found that decomposition of pig manure has two stages characterized by the presence or absence of earthworms. Thus, the presence of earthworms was related with increases in overall microbial biomass and activity, which decreased when earthworms left the substrate; the same pattern was observed for fungi. Furthermore, earthworms modified the physiological profiles of microbial communities of pig manure, increasing the diversity of substrates utilized. In addition, earthworms promoted a more efficient use of energy of microbial communities, as the metabolic quotient showed. The rate of carbon loss was almost twice where earthworms were present, revealing faster decomposition. Our data match with the recent findings that to maintain essential processes the functional properties of present species are at least as important as the number of species per se. This is in accordance with the “insurance hypothesis,” which states that a large number of species is probably essential for maintaining stable processes in changing environments, as the presence of earthworms would have promoted in pig manure.  相似文献   

16.
S. Scheu 《Oecologia》1990,84(3):351-358
Summary Microbial biomass, nutrient (N and P) status, and carbon and nutrient limitation of the microflora were investigated in soils from five different sites (field, 5-, 12-, and about 50-year-old fallow, beechwood), which represent different stages of a secondary succession from a wheat field to the climax ecosystem of a beechwood on limestone. In addition, the effect of faeces production by the substrate feeding earthworm species Octolasion lacteum (Örley) on the nutrient status of the soil microflora of these sites was studied. Humus had accumulated in the soil of the third fallow site, with an enhanced biomass of microflora. However, in the beechwood soil, which had the highest humus content, microbial biomass was lower than in the soil of the third fallow site and similar to that of the field and the two younger fallow sites. In general, soil microbial biomass was little affected by the passage of soil through the gut of O. lacteum. The soil microflora of the field, the 5-, 12-, and about 50-year-old fallow was limited by carbon, whereas in the beechwood soil phosphorus limited microbial growth. NItrogen availability to the soil microflora was low in the two younger fallow sites and high in the field and the third fallow. In the beechwood soil nitrogen supply did not affect microbial carbon utilization. Application of phosphorus stimulated glucose mineralization in the soil of the field, the third fallow, and the beechwood, but not in the two younger fallow sites. Therefor, the nutrient status of the soil microflora seems to have changed during secondary succession: presumably, during the first phase the availability of nitrogen decreased, whereas during the second phase microbial phosphorus supply became more important, which resulted in phosphorus limitation of the soil microflora in the climax ecosystem. The passage of soil through the gut of O. lacteum caused an alteration in the microbial nutrient status. Generally, microbial growth in earthworm casts was limited by carbon. The relative effect of the gut passage of the soils on microbial carbon utilization seems to increase during succession. Therefore, the effect of decomposer invertebrates on microbial nutrient supply seems to increase during secondary succession. In general, nitrogen did not limit microbial carbon utilization in earthworm casts. Phosphorus requirements of the soil microflora were lowered by the gut passage of the soil of the third fallow site and the beechwood, which indicates an increased phosphorus supply in earthworm casts. Howerver, this additional supply was not sufficient to enable optimal carbon utilization by the soil microflora. The results indicate that the effect of decomposer invertebrates on the soil microflora depends on the nutrient status of the ecosystem.  相似文献   

17.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

18.
Recent studies document North American earthworm invasions and their profound effects on the structure of the soil profile, which is the habitat for soil microorganisms (mainly fungi and bacteria). Dramatic alterations made to these layers during earthworm invasion significantly change microbial community structure and therefore microbial activities such as C transformations. Understanding the impacts of earthworm invasion on the microbes themselves will give insight into earthworm effects on microbial activities. Bacterial and actinomycete communities in earthworm guts and casts have not been studied in environments recently invaded by earthworms. Earthworm invasion tended to decrease fungal species density and fungal species diversity and richness. The presence of earthworms decreased zygomycete species abundance probably due to disruption of fungal hyphae. Physical disruption of hyphae may also explain decreased mycorrhizal colonization rates, decreased mycorrhizal abundance and altered mycorrhizal morphology in the presence of earthworms. Mixing of organic layers into mineral soil during earthworm invasion tended to decrease microbial biomass in forest floor materials while increasing it in mineral soil. In newly invaded forest soils, microbial respiration and the metabolic quotient tended to decline. In forests where either the microbial community has had time to adapt to earthworm activities, or where the destruction of the forest floor is complete, as in invasions by the Asian Amynthas hawayanus, the presence of earthworms tends to increase the metabolic quotient indicating a shift to a smaller, more active microbial community.  相似文献   

19.
周波  唐晶磊  代金君  许欢  杨小雪  陈旭飞  张池  戴军 《生态学报》2015,35(19):6269-6279
城市污泥处理是一项世界性难题,污泥农业利用是其最简单有效的资源化利用方式之一,但污泥中较高的重金属含量限制了其实际推广应用,利用蚯蚓-超富集植物联合修复污泥重金属的方法已引起国内外研究者的关注。以新鲜城市脱水污泥为研究对象,接种赤子爱胜蚓(Eisenia fetida)进行室内培养试验,系统研究蚯蚓作用下污泥重金属形态的变化,及其与污泥氧化还原条件、化学和微生物性质变化的关系,以期为蚯蚓-超富集植物联合修复技术在污泥重金属处理中的应用提供理论依据。结果表明,试验前期蚯蚓在污泥中能正常生长和存活,前20 d总生物量增加了52%。蚯蚓可以显著促进污泥中的Cu、Zn、Cd、Ni等重金属从残渣态和铁锰态等稳定形态向交换态和水溶态等有效形态转化。还可以显著降低污泥中还原性物质的含量,减缓p H值下降速度,降低总有机碳含量,促进铵态氮向硝态氮转化,减少污泥微生物的数量并增加其种群活性。蚯蚓作用下,污泥中重金属的活化程度与还原性物质的含量呈显著负相关,而与微生物种群的活性呈显著正相关(P0.05)。综上所述,蚯蚓可以促进污泥重金属的活化,并改善污泥的肥力条件,为修复植物在污泥中的正常生长和对重金属离子的快速吸收提供有利条件。  相似文献   

20.
Recent studies on earthworm invasion of North American soils report dramatic changes in soil structure, nutrient dynamics and plant communities in ecosystems historically free of earthworms. However, the direct and indirect impacts of earthworm invasions on animals have been largely ignored. This paper summarizes the current knowledge on the impact of earthworm invasion on other soil fauna, vertebrates as well as invertebrates.Earthworm invasions can have positive effects on the abundance of other soil invertebrates, but such effects are often small, transient, and restricted to habitats with harsh climates or a long history of earthworm co-occurrence with other soil invertebrates. Middens and burrows can increase soil heterogeneity and create microhabitats with a larger pore size, high microbial biomass, and microclimates that are attractive to micro- and mesofauna. Under harsh climatic conditions, the aggregates formed by earthworms may increase the stability of soil microclimates. Positive effects can also be seen when comminution and mucus secretion increase the palatability of unpalatable organic material for microorganisms which are the main food of most micro- and mesofaunal groups. For larger invertebrates or small vertebrates, invasive earthworms may become important prey, with the potential to increase resource availability. In the longer-term, the activity of invading earthworms can have a strong negative impact on indigenous faunal groups across multiple trophic levels. Evidence from field and laboratory studies indicates that the restructuring of soil layers, particularly the loss of organic horizons, physical disturbance to the soil, alteration of understory vegetation, and direct competition for food resources, lead directly and indirectly to significant declines in the abundance of soil micro- and mesofauna. Though studies of invasive earthworm impacts on the abundance of larger invertebrates or vertebrates are generally lacking, recent evidence suggests that reduced abundance of small soil fauna and alteration of soil microclimates may be contributing to declines in vertebrate fauna such as terrestrial salamanders. Preliminary evidence also suggests the potential for earthworm invasions to interact with other factors such as soil pollution, to negatively affect vertebrate populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号