首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent availability of high-resolution structures of two structurally highly homologous, but functionally distinct aquaporins from the same species, namely Escherichia coli AqpZ, a pure water channel, and GlpF, a glycerol channel, presents a unique opportunity to understand the mechanism of substrate selectivity in these channels. Comparison of the free energy profile of glycerol conduction through AqpZ and GlpF reveals a much larger barrier in AqpZ (22.8 kcal/mol) than in GlpF (7.3 kcal/mol). In either channel, the highest barrier is located at the selectivity filter. Analysis of substrate-protein interactions suggests that steric restriction of AqpZ is the main contribution to this large barrier. Another important difference is the presence of a deep energy well at the periplasmic vestibule of GlpF, which was not found in AqpZ. The latter difference can be attributed to the more pronounced structural asymmetry of GlpF, which may play a role in attracting glycerol.  相似文献   

2.
The vestibule loop regions of aquaglyceroporins are involved in accumulation of glycerol inside the channel pore. Even though most loop regions do not show high sequence similarity among aquaglyceroporins, loop E is highly conserved in aquaglyceroporins, but not in members of the homologous aquaporins. Specifically, a tryptophan residue is extremely conserved within this loop. We have investigated the role of this residue (Trp219) that deeply protrudes into the protein and potentially interacts with adjacent loops, using the E. coli aqualgyeroporin GlpF as a model. Replacement of Trp219 affects the activity of GlpF and impairs the stability of the tetrameric protein. Furthermore, we have identified an amino acid cluster involving Trp219 that stabilizes the GlpF tetramer. Based on our results we propose that Trp219 is key for formation of a defined vestibule structure, which is crucial for glycerol accumulation as well as for the stability of the active GlpF tetramer.  相似文献   

3.
The glycerol uptake facilitator, GlpF, a major intrinsic protein found in Escherichia coli, selectively conducts water and glycerol across the inner membrane. The free energy landscape characterizing the assisted transport of glycerol by this homotetrameric aquaglyceroporin has been explored by means of equilibrium molecular dynamics over a timescale spanning 0.12 μs. To overcome the free energy barriers of the conduction pathway, an adaptive biasing force is applied to the glycerol molecule confined in each of the four channels. The results illuminate the critical role played by intramolecular relaxation on the diffusion properties of the permeant. These free energy calculations reveal that glycerol tumbles and isomerizes on a timescale comparable to that spanned by its adaptive-biasing-force-assisted conduction in GlpF. As a result, reorientation and conformational equilibrium of glycerol in GlpF constitute a bottleneck in the molecular simulations of the permeation event. A profile characterizing the position-dependent diffusion of the permeant has been determined, allowing reaction rate theory to be applied for investigating conduction kinetics based on the measured free energy landscape.  相似文献   

4.
BACKGROUND: The E. coli glycerol facilitator, GlpF, selectively conducts glycerol and water, excluding ions and charged solutes. The detailed mechanism of the glycerol conduction and its relationship to the characteristic secondary structure of aquaporins and to the NPA motifs in the center of the channel are unknown. RESULTS: Molecular dynamics simulations of GlpF reveal spontaneous glycerol and water conduction driven, on a nanosecond timescale, by thermal fluctuations. The bidirectional conduction, guided and facilitated by the secondary structure, is characterized by breakage and formation of hydrogen bonds for which water and glycerol compete. The conduction involves only very minor changes in the protein structure, and cooperativity between the GlpF monomers is not evident. The two conserved NPA motifs are strictly linked together by several stable hydrogen bonds and their asparagine side chains form hydrogen bonds with the substrates passing the channel in single file. CONCLUSIONS: A complete conduction of glycerol through the GlpF was deduced from molecular dynamics simulations, and key residues facilitating the conduction were identified. The nonhelical parts of the two half-membrane-spanning segments expose carbonyl groups towards the channel interior, establishing a curve-linear pathway. The conformational stability of the NPA motifs is important in the conduction and critical for selectivity. Water and glycerol compete in a random manner for hydrogen bonding sites in the protein, and their translocations in single file are correlated. The suggested conduction mechanism should apply to the whole family.  相似文献   

5.
The three-dimensional structure of GlpF, the glycerol facilitator of Escherichia coli, was determined by cryo-electron microscopy. The 6.9-A density map calculated from images of two-dimensional crystals shows the GlpF helices to be similar to those of AQP1, the erythrocyte water channel. While the helix arrangement of GlpF does not reflect the larger pore diameter as seen in the projection map, additional peripheral densities observed in GlpF are compatible with the 31 additional residues in loops C and E, which accordingly do not interfere with the inner channel construction. Therefore, the atomic structure of AQP1 was used as a basis for homology modeling of the GlpF channel, which is predicted to be free of bends, wider, and more vertically oriented than the AQP1 channel. Furthermore, the residues facing the GlpF channel exhibit an amphiphilic nature, being hydrophobic on one side and hydrophilic on the other side. This property may partially explain the contradiction of glycerol diffusion but limited water permeation capacity.  相似文献   

6.
GlpF, the glycerol facilitator protein of Escherichia coli, is an archetypal member of the aquaporin superfamily. To assess its structure, recombinant histidine-tagged protein was overexpressed, solubilized in octylglucoside and purified to homogeneity. Negative stain electron microscopy of solubilized GlpF protein revealed a tetrameric structure of ~80 Å side length. Scanning transmission electron microscopy yielded a mass of 170 kDa, corroborating the tetrameric nature of GlpF. Reconstitution of GlpF in the presence of lipids produced highly ordered two-dimensional crystals, which diffracted electrons to 3.6 Å resolution. Cryoelectron microscopy provided a 3.7 Å projection map exhibiting a unit cell comprised of two tetramers. In projection, GlpF is similar to AQP1, the erythrocyte water channel. However, the major density minimum within each monomer is distinctly larger in GlpF than in AQP1.  相似文献   

7.
The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating the equilibrium free-energy difference to the nonequilibrium work of the irreversible pulling experiments. In this paper, I present a new SMD study of the glycerol permeation through GlpF to explore the free-energy profile of glycerol along the permeation channel. Instead of the JE in terms of thermodynamic work, I use the fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD), in terms of mechanical work, for extracting the free-energy difference from the nonequilibrium work of irreversible pulling experiments. The results of this new SMD-BD-FDT study are in agreement with the experimental data and with the ABF results.  相似文献   

8.
The atomic structures of a transmembrane water plus glycerol conducting channel (GlpF), and now of aquaporin Z (AqpZ) from the same species, Escherichia coli, bring the total to three atomic resolution structures in the aquaporin (AQP) family. Members of the AQP family each assemble as tetramers of four channels. Common helical axes support a wider channel in the glycerol plus water channel paradigm, GlpF. Water molecules form a single hydrogen bonded file throughout the 28 A long channel in AqpZ. The basis for absolute exclusion of proton or hydronium ion conductance through the line of water is explored using simulations.  相似文献   

9.
Arsenic trioxide uptake by human and rat aquaglyceroporins   总被引:9,自引:0,他引:9  
Aquaglyceroporins are channels that allow downhill movement of uncharged solutes such as glycerol and urea. Arsenic trioxide has recently been shown to be translocated by mouse mAQP7 and rat rAQP9. In this study we examined the ability of the four known human members of the aquaglyceroporin family, hAQP3, hAQP7, hAQP9, and hAQP10, to facilitate As(OH)(3) movement in Xenopus oocytes. The order of effectiveness as an As(III) transporter was found to be hAQP9 > hAQP7, with little or no transport by hAQP3 or hAQP10. From comparison with the crystal structure of the bacterial homologue GlpF and the bovine erythrocyte water channel bAQP1, AQP9 residues Phe-64 and Arg-219 are predicted to serve as part of the selectivity filter. The requirement for Phe-64 and Arg-219 in arsenic trioxide translocation was examined by site-directed mutagenesis of rAQP9, taking advantage of the fact that rat AQP9 catalyzes (73)As(OH)(3) uptake in Saccharomyces cerevisiae and in oocytes. R219A, R219K, F64A, F64T, and F64W were expressed in both yeast and oocytes, and permeability of arsenic trioxide and glycerol was measured. A lysine but not an alanine residue could substitute for the highly conserved Arg-219, indicating that a positive charge is required at the entry to the channel. In contrast, the phenylalanine residue, which is believed to position substrates near the conserved arginine, was not required for either arsenic trioxide or glycerol uptake. The results support the hypothesis that arsenic trioxide and glycerol use the same translocation pathway in AQP9.  相似文献   

10.
BACKGROUND INFORMATION: In silico both orthodox aquaporins and aquaglyceroporins are shown to exclude protons. Supporting experimental evidence is available only for orthodox aquaporins. In contrast, the subset of the aquaporin water channel family that is permeable to glycerol and certain small, uncharged solutes has not yet been shown to exclude protons. Moreover, different aquaglyceroporins have been reported to conduct ions when reconstituted in planar bilayers. RESULTS: To clarify these discrepancies, we have measured proton permeability through the purified Escherichia coli glycerol facilitator (GlpF). Functional reconstitution into planar lipid bilayers was demonstrated by imposing an osmotic gradient across the membrane and detecting the resulting small changes in ionic concentration close to the membrane surface. The osmotic water flow corresponds to a GlpF single channel water permeability of 0.7x10(-14) cm(3).subunit(-1).s(-1). Proton conductivity measurements carried out in the presence of a pH gradient (1 unit) revealed an upper limit of the H(+) (OH(-)) to H(2)O molecules transport stoichiometry of 2x10(-9). A significant GlpF-mediated ion conductivity was also not detectable. CONCLUSIONS: The lack of a physiologically relevant GlpF-mediated proton conductivity agrees well with predictions made by molecular dynamics simulations.  相似文献   

11.
Fps1p is a glycerol efflux channel from Saccharomyces cerevisiae. In this atypical major intrinsic protein neither of the signature NPA motifs of the family, which are part of the pore, is preserved. To understand the functional consequences of this feature, we analyzed the pseudo-NPA motifs of Fps1p by site-directed mutagenesis and assayed the resultant mutant proteins in vivo. In addition, we took advantage of the fact that the closest bacterial homolog of Fps1p, Escherichia coli GlpF, can be functionally expressed in yeast, thus enabling the analysis in yeast cells of mutations that make this typical major intrinsic protein more similar to Fps1p. We observed that mutations made in Fps1p to "restore" the signature NPA motifs did not substantially affect channel function. In contrast, when GlpF was mutated to resemble Fps1p, all mutants had reduced activity compared with wild type. We rationalized these data by constructing models of one GlpF mutant and of the transmembrane core of Fps1p. Our model predicts that the pore of Fps1p is more flexible than that of GlpF. We discuss the fact that this may accommodate the divergent NPA motifs of Fps1p and that the different pore structures of Fps1p and GlpF may reflect the physiological roles of the two glycerol facilitators.  相似文献   

12.
In the light of the recently published structure of GlpF and AQP1, we have analysed the nature of the residues which could be involved in the formation of the selectivity filter of aquaporins, glycerol facilitators and aquaglyceroporins. We demonstrate that the functional specificity for major intrinsic protein (MIP) channels can be explained on one side by analysing the polar environment of the residues that form the selective filter. On the other side, we show that the channel selectivity could be associated with the oligomeric state of the membrane protein. We conclude that a non-polar environment in the vicinity of the top of helix 5 could allow aquaglyceroporins and GlpF to exist as monomers within the hydrophobic environment of the membrane.  相似文献   

13.
We previously observed that aquaporins and glycerol facilitators exhibit different oligomeric states when studied by sedimentation on density gradients following nondenaturing detergent solubilization. To determine the domains of major intrinsic protein (MIP) family proteins involved in oligomerization, we constructed protein chimeras corresponding to the aquaporin AQPcic substituted in the loop E (including the proximal part of transmembrane domain (TM) 5) and/or the C-terminal part (including the distal part of TM 6) by the equivalent domain of the glycerol channel aquaglyceroporin (GlpF) (chimeras called AGA, AAG, and AGG). The analogous chimeras of GlpF were also constructed (chimeras GAG, GGA, and GAA). cRNA corresponding to all constructs were injected into Xenopus oocytes. AQPcic, GlpF, AAG, AGG, and GAG were targeted to plasma membranes. Water or glycerol membrane permeability measurements demonstrated that only the AAG chimera exhibited a channel function corresponding to water transport. Analysis of all proteins expressed either in oocytes or in yeast by velocity sedimentation on sucrose gradients following solubilization by 2% n-octyl glucoside indicated that only AQPcic and AAG exist in tetrameric forms. GlpF, GAG, and GAA sediment in a monomeric form, whereas GGA and AGG were found mono/dimeric. These data bring new evidence that, within the MIP family, aquaporins and GlpFs behave differently toward nondenaturing detergents. We demonstrate that the C-terminal part of AQPcic, including the distal half of TM 6, can be substituted by the equivalent domain of GlpF (AAG chimera) without modifying the transport specificity. Our results also suggest that interactions of TM 5 of one monomer with TM 1 of the adjacent monomer are crucial for aquaporin tetramer stability.  相似文献   

14.
We have used pairs of cardiac cells (i.e., one real guinea pig ventricular cell and a real-time simulation of a numerical model of a guinea pig ventricular cell) to evaluate the effects on action potential conduction of a variable coupling conductance in combination with agents that either increase or decrease the magnitude of the L-type calcium current. For the cell pairs studied, we applied a direct repetitive stimulation to the real cell, making it the "leader" cell of the cell pair. We have demonstrated that significant delays in action potential conduction for a cell pair can occur either with a decreased value of coupling conductance or with an asymmetry in size such that the follower cell is larger than the leader cell. In both conditions we have shown that isoproterenol, applied to the real cell at very low concentrations, can reversibly decrease the critical coupling conductance (below which action potential conduction fails) for a cell pair with fixed cell sizes, or, for a fixed value of coupling conductance, increase the maximum allowable asymmetry in cell size for successful conduction. For either of these effects, we were able to show that treatment of the real cell with BayK 8644, which more specifically increases the magnitude of the L-type calcium current, was able to mimic the actions of isoproterenol. Treatment of the leader cell of the cell pair (the real cell) with nifedipine, which selectively lowers the magnitude of the L-type calcium current, had effects opposite those of isoproterenol or BayK 8644. The actions of nifedipine, isoproterenol, and BayK 8644 are all limited to conditions in which the conduction delay is on the order of 5 ms or more, whether this delay is caused by limited coupling conductance or by asymmetry in size of the cells. This limitation is consistent with the time course of the L-type calcium current and suggests that the effects of calcium channel blockers or beta-adrenergic blocking drugs, in addition to being selective for regions of the heart that depend on the L-type calcium current for the upstroke of the action potential, would also be somewhat selective for regions of the heart that have discontinuous conduction, either normally or because of some pathological condition.  相似文献   

15.
The MIP (major intrinsic protein) family is a widespread family of membrane proteins exhibiting two major types of channel properties: aquaporins and solute facilitators. In the present study, freeze-fracture electron microscopy was used to investigate the oligomerization state of two MIP proteins heterologously expressed in the plasma membrane of Xenopus laevis oocytes: AQPcic, an aquaporin from the insect Cicadella viridis, and GlpF, a glycerol facilitator from Escherichia coli. Swelling assays performed on oocytes 48 and 72 h following cRNA microinjections showed that these proteins were functionally expressed. Particle density determinations indicated that expression of proteins is related to an increase in particle density on the P fracture face of oocyte plasma membranes. Statistical analysis of particle sizes was performed on protoplasmic fracture faces of the plasma membrane of oocytes expressing AQPcic and GlpF 72 h after cRNA microinjections. Compared to control oocytes, AQPcic-expressing oocytes exhibited a specific population of particles with a mean diameter of 8.7 +/- 0.1 nm. This value is consistent with the previously reported tetrameric organization of AQPcic. In addition, AQPcic particles aggregate and form orthogonal arrays similar to those observed in native membranes of C. viridis, consisting of homotetramers of AQPcic. On the protoplasmic fracture face of oocytes expressing GlpF, the particle density is increased by 4.1-fold and the mean diameter of specifically added particles is 5.8 +/- 0.1 nm. This value fits with a monomer of the 28-kDa GlpF protein plus the platinum-carbon layer. These results clearly demonstrate that GlpF is a monomer when functionally expressed in plasma membranes of Xenopus oocytes and therefore emphasize the key role of the oligomerization state of MIP proteins with respect to their function.  相似文献   

16.
Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.  相似文献   

17.
A refined structure of the human water channel aquaporin-1 is presented. The model rests on the high resolution X-ray structure of the homologous bacterial glycerol transporter GlpF, electron crystallographic data at 3.8 A resolution and a multiple sequence alignment of the aquaporin superfamily. The crystallographic R and free R values (36.7% and 37.8%) for the refined structure are significantly lower than for previous models. Improved geometry and enhanced stability in molecular dynamics simulations demonstrate a significant improvement of the aquaporin-1 structure. Comparison with previous aquaporin-1 models shows significant differences, not only in the loop regions, but also in the core of the water channel.  相似文献   

18.
Aquaporins are a family of membrane proteins specialized in rapid water conduction across biological membranes. Whether these channels also conduct gas molecules and the physiological significance of this potential function have not been well understood. Here we report 140 ns of molecular dynamics simulations of membrane-embedded AQP1 and of a pure POPE bilayer addressing these questions. The permeability of AQP1 to two types of gas molecules, O2 and CO2, was investigated using two complementary methods, namely, explicit gas diffusion simulation and implicit ligand sampling. The simulations show that the central (tetrameric) pore of AQP1 can be readily used by either gas molecule to permeate the channel. The two approaches produced similar free energy profiles associated with gas permeation through the central pore: a -0.4 to -1.7 kcal/mol energy well in the middle, and a 3.6-4.6 kcal/mol energy barrier in the periplasmic vestibule. The barrier appears to be mainly due to a dense cluster of water molecules anchored in the periplasmic mouth of the central pore by four aspartate residues. Water pores show a very low permeability to O2, but may contribute to the overall permeation of CO2 due to its more hydrophilic nature. Although the central pore of AQP1 is found to be gas permeable, the pure POPE bilayer provides a much larger cross-sectional area, thus exhibiting a much lower free energy barrier for CO2 and O2 permeation. As such, gas conduction through AQP1 may only be physiologically relevant either in membranes of low gas permeability, or in cells where a major fraction of the cellular membrane is occupied by AQPs.  相似文献   

19.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

20.
Recently we have shown that maltoporin channels reconstituted into black lipid membranes have pronounced asymmetric properties in both ion conduction and sugar binding. This asymmetry revealed also that maltoporin insertion is directional. However, the orientation in the lipid bilayer remained an open question. To elucidate the orientation, we performed point mutations at each side of the channel and analyzed the ion current fluctuation caused by an asymmetric maltohexaose addition. In a second series we used a chemically modified maltohexaose sugar molecule with inhibited entry possibility from the periplasmic side. In contrast to the natural outer cell wall of bacteria, we found that the maltoporin inserts in artificial lipid bilayer in such a way that the long extracellular loops are exposed to the same side of the membrane than protein addition. Based on this orientation, the directional properties of sugar binding were correlated to physiological conditions. We found that nature has optimized maltoporin channels by lowering the activation barriers at each extremity of the pore to trap sugar molecules from the external medium and eject them most efficiently to the periplasmic side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号