首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) – a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and α-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM.  相似文献   

2.
Lung microsomal membranes that contain the redox active components associated with the mixed-function oxidase system can be peroxidized in vitro. To investigate the characteristics of rat lung microsomal lipid peroxidation, we performed experiments using a variety of peroxidation initiators and microsomes obtained from normal and vitamin E-deficient rats. We found that lung microsomes obtained from normal rats are peroxidized much less than liver microsomes obtained from the same animals. Only initiation systems using very high concentrations of ferrous iron produced any significant peroxidation of normal rat lung microsomes. Lung microsomes obtained from vitamin E-deficient rats were found to be much more susceptible to peroxidation. Glutathione (GSH) was effective in inhibiting peroxidation when lung microsomes from normal rats were peroxidized. GSH was not effective in decreasing peroxidation when microsomes from vitamin E-deficient rats were peroxidized in the same system. We conclude that both GSH and vitamin E protect lung microsomal membranes from peroxidation. Glutathione protection appears to be related to the presence of a sulfhydryl group.  相似文献   

3.
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.  相似文献   

4.
《Free radical research》2013,47(1-2):57-68
The effects of oxidative stress caused by hyperoxia or administration of the redox active compound diquat were studied in isolated hepatocytes, and the relative contribution of lipid peroxidation, glutathione (GSH) depletion, and NADPH oxidation to the cytotoxicity of active oxygen species was investigated.

The redox cycling of diquat occurred primarily in the microsomal fraction since diquat was found not ' to penetrate into the mitochondria. Depletion of intracellular GSH by pretreatment of the animals with diethyl maleate promoted lipid peroxidation and sensitized the cells to oxidative stress. Diquat toxicity was also greatly enhanced when glutathione reductase was inhibited by pretreatment of the cells with 1,3-bis(2-chloroethyI)-1-nitrosourea. Despite extensive lipid peroxidation, loss of cell viability was not observed, with either hyperoxia or diquat, until the GSH level had fallen below ≈ 6 nmol/106 cells.

The iron chelator desferrioxamine provided complete protection against both diquat-induced lipid peroxidation and loss of cell viability. In contrast, the antioxidant a-tocopherol inhibited lipid peroxidation but provided only partial protection from toxicity. The hydroxy! radical scavenger α-keto-γ-methiol butyric acid, finally, also provided partial protection against diquat toxicity but had no effect on lipid peroxidation.

The results indicate that there is a critical GSH level above which cell death due to oxidative stress is not observed. As long as the glutathione peroxidase – glutathione reductase system is unaffected, even relatively low amounts of GSH can protect the cells by supporting glutathione peroxidase-mediated metabolism of H2O2 and lipid hydroperoxides.  相似文献   

5.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

6.
Although the importance of glutathione in protection against oxidative stress is well recognized, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13-14) aged 20-30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH) decreased by 13% with exercise. Of the measured red blood cell (RBC) antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

7.
The peroxidation of rat liver microsomal lipids is stimulated in the presence of iron by the addition of NADPH or ascorbate and is inhibited by the addition of glutathione (GSH). The fate of GSH and the oxidative modification of proteins under these conditions have not been well studied. Rat liver microsomes were incubated at 37 degrees C under 95% O2:5% CO2 in the presence of 10 microM ferric chloride, 400 microM ADP, and either 450 microM ascorbic acid or 400 microM NADPH. Lipid peroxidation was assessed in the presence 0, 0.2, 0.5, 1, or 5 mM GSH by measuring thiobarbituric acid reactive substance (TBARS) and oxidative modification of proteins by measuring protein thiol and carbonyl groups. GSH inhibited TBARS and protein carbonyl group formation in both ascorbate and NADPH systems in a dose-dependent manner. Heat denaturing of microsomes or treatment with trypsin resulted in the loss of this protection. The formation of protein carbonyl groups could be duplicated by incubating microsomes with 4-hydroxynonenal. Ascorbate-dependent peroxidation caused a loss of protein thiol groups which was diminished by GSH only in fresh microsomes. Both boiling and trypsin treatment significantly decreased the basal protein thiol content of microsomes and enhanced ascorbate-stimulated lipid peroxidation. Protection against protein carbonyl group formation by GSH correlated with the inhibition of lipid peroxidation and appeared not to be due to the formation of the GSH conjugate of 4-hydroxynonenal as only trace amounts of this conjugate were detected. Ninety percent of the GSH lost after 60 min of peroxidation was recoverable as borohydride reducible material in the supernatant fraction. The remaining 10% could be accounted for as GSH-bound protein mixed disulfides. However, only 75% of the GSH lost during peroxidation appeared as glutathione disulfide, suggesting that some was converted to other soluble borohydride reducible forms. These data support a role for protein thiol groups in the GSH-mediated protection of microsomes against lipid peroxidation.  相似文献   

8.
Oxidative stress is a hypothesis for the association of reactive oxygen species with cerebrovascular and neurodegenerative diseases. Thus, we examined whether oral betaine can act as a preventive agent in ethanol-induced oxidative stress on the cerebellum of rats. Thirty-two adult male Sprague–Dawley rats were divided into four equal groups (control, ethanol, betaine, and betaine plus ethanol) with different dietary regimens and were followed up for 1 month. Total homocysteine (tHcy) of plasma and cerebellum homogenate was determined by an Axis® homocysteine EIA kit, and antioxidant enzyme (glutathione peroxidase (GPx), SOD, and CAT) activities of cerebellum homogenate were measured chemically by a spectrophotometer. Lipid peroxidation of cerebellum was shown by the measurement of thiobarbituric reactive substances (TBARS) via a spectrophotometer. Ethanol-induced hyperhomocysteinemia was manifested by an increase in the concentrations of tHcy in the plasma and cerebellum homogenates of the ethanol group, while ethanol-induced oxidative stress was indicated via an increase in lipid peroxidation marker (TBARS) in cerebellum homogenates of ethanol-treated rats. In contrast, betaine prevented hyperhomocysteinemia and oxidative stress in the betaine plus ethanol group as well as the betaine group. The results of the present investigation indicated that the protective effect of betaine is probably related to its ability to strengthen the cerebellum membrane cells by enhancement of antioxidant enzyme activity principally GPx, while the methyl donor effect of betaine to reduce hyperhomocysteinemia has been explained previously and confirmed in the present study.  相似文献   

9.
Circadian variations of lipid peroxidation products: thiobarbituric acid and reactive substances (TBARS), antioxidants: reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and liver marker enzymes such as transaminases (aspartate transaminase (AST) and alanine transaminase (ALT), alkaline phosphatase (ALP) and γ-Glutamyl transpeptidase (GGT) in circulation were analysed in control and ammonium chloride (AC) induced (100 mg/kg bodyweight) hyperammonemic rats. Elevated lipid peroxidation and liver marker enzymes (increased mesor of TBARS, AST, ALT, ALP and GGT) associated with decreased activities of antioxidants (decreased mesor of GPx, GSH, SOD and CAT) were found in hyperammonemic rats. Variations in acrophase, amplitude and r values were also found in between the control and hyperammonemic rats. These alterations clearly indicate that temporal liver marker enzymes and redox status are modulated during hyperammonemic conditions, which may also play a crucial role in disease development.  相似文献   

10.
《Free radical research》2013,47(6):325-332
In this study we have examined the effect of propionyl-L-carnitine (PC) on rat spinal cord ischaemia and post-ischaemic reperfusion injury by evaluating two lipid peroxidation indices, thiobarbituric acid reactive substances (TBARS) and diene conjugation, before and after the addition of an ADP-Fe+2 complex to spinal cord homogenates. Aerobic, ischaemic, and post ischaemic reperfusion rat spinal cord homogenates from PC treated and untreated animals did not show any statistically significant difference in their TBARS and conjugated diene content. The addition of the ADP-Fe+2 complex to these homogenates resulted in an increased production of both the lipid peroxidation indices, though the magnitude of such formation was related to the type of experimental intervention. The post-ischaemic reperfusion samples of untreated rats showed the highest TBARS and conjugated diene content, while ischaemic samples in either treated and untreated rats did not show any statistically significant difference with respect to the aerobic samples. The post-ischaemic reperfusion samples of treated rats showed a statistically significant decrease of TBARS and conjugated diene production in comparison to the untreated samples. In addition, PC was also able to partially inhibit TBARS and conjugated diene formation in linoleic acid micelles exposed to hemoglobin, though it did not protect albumin fragmentation from the irradiation of water with an X-ray source.  相似文献   

11.
GSH is an important cellular defense against oxidant injury. Its effect in the rat liver microsomal lipid peroxidation system has been examined. Incubation of fresh rat liver microsomes with ascorbic acid and ADP-chelated iron leads to the peroxidation of microsomal lipids (production of thiobarbituric acid-reactive substances and destruction of polyunsaturated fatty acids) following a 2 to 5 min lag. Addition of 0.1 mM GSH to the system lengthened the lag period by 5 to 15 min without affecting the rate or the extent of lipid peroxidation. GSH could not be replaced in prolonging the lag by cysteine, mercaptoethanol, dithiothreitol, propylthiouracil, or GSSG. The GSH effect on the lag was abolished by heating or trypsin digestion of the microsomes, indicating that microsomal protein is required for its expression. Progressively longer lags were observed as the GSH concentration was increased from 0.1 to 5 mM, but there was no evidence of GSH oxidation as a consequence of the protection against lipid peroxidation. GSH protected against heat inactivation of the microsomal protein responsible for the GSH effect. Experiments with an oxygen electrode revealed that the GSH protection did not alter the ratio of O2 consumed to thiobarbituric acid-reactive substances produced. This implicated free radical scavenging as the mechanism of protection. These results indicate the existence of a GSH-dependent rat liver microsomal protein which scavenges free radical. This protein may be an important defense against free radical injury to the microsomal membrane.  相似文献   

12.
Lipid peroxidation is believed to play an important role in pathogenesis of diseases. 4-Nitroquiunoline 1-oxide (4-NQO) a potent oral carcinogen, widely used for induction of oral carcinogenesis, was found to induce lipid peroxidation in vivo and in vitro. Green tea contains high content of polyphenols, which are potent antioxidants. Thus green tea polyphenols (GP) can play a protective role in 4-NQO induced in vitro lipid peroxidation. 4-NQO at the concentration of 1.5 mM was found to induce lipid peroxidation in 5% liver homogenate in phosphate buffered saline and extent of lipid peroxidation at the different time intervals 0, 15, 30 and 45 min where studied by assessing parameters such as hydroxyl radical production (OH), thiobarbituric acid reactants (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). It was found that addition of 4-NQO caused an increase in OH and TBARS level and a decrease in activity of SOD, CAT and the levels of GSH. Simultaneous addition of GP 10 mg/ml significantly decreased lipid peroxidation and increased in antioxidant status. Thus, we conclude that GP, a potent antioxidant, was found to nullify 4-NQO induced lipid peroxidation in vitro and 4-NQO acts initially by causing oxidative stress and leads to carcinogenesis.  相似文献   

13.
In a previous study tert-butyl hydroperoxide (t-BOOH) was found to promote reductive release of nonheme, nonferritin iron from rat liver microsomes. The reaction was catalyzed by cytochrome P450 and was strictly contingent on the availability of ADP. In this study, t-BOOH was also found to promote microsomal lipid peroxidation, as evidenced by formation of malondialdehyde. t-BOOH-dependent lipid peroxidation was stimulated by ADP, and four lines of evidence suggested that such stimulation was mediated by reductive release and subsequent redox cycling of nonheme, nonferritin iron. First, lipid peroxidation was stimulated by the same concentration of ADP that promoted iron release. Second, depletion of nonheme, nonferritin iron by pretreatment of rats with phenobarbital decreased the stimulation of lipid peroxidation by ADP. Third, the effect of ADP was maximal when the concentration of t-BOOH was adjusted to values that yielded maximum iron release. Fourth, the effect of ADP was abolished by bathophenanthroline, which is known to chelate ferrous iron in a redox inactive form. These results suggest that the reductive release of nonheme, nonferritin iron exacerbates the deleterious effects of t-BOOH on microsomal lipids.  相似文献   

14.
Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.  相似文献   

15.
We investigated the effects of vitamin E and topiramate (TPM) administrations on pentylentetrazol (PTZ)–induced blood and brain toxicity in rats. Forty rats were randomly divided into five equal groups. The first and second groups were used for the control and PTZ groups, respectively. Fifty or 100 mg TPM were administered to rats constituting the third and fourth groups for 7 days, respectively. The TPM and vitamin E combination was given to animals in the fifth group. At the end of 7 days, all groups except the first received a single dose of PTZ. Blood and brain samples were taken at 3 hrs after PTZ administration. Lipid peroxidation levels of plasma, erythrocyte, brain cortex and brain microsomal fraction; nitric oxide levels of serum; and the number of spikes and epileptiform discharges of the EEG were increased by PTZ administration. Plasma and brain vitamin E concentration, erythrocyte glutathione peroxidase (GSH-Px) activity and latency to first spike of the EEG were decreased by PTZ. Plasma lipid peroxidation levels in the third group and plasma and erythrocyte lipid peroxidation levels in the fifth group were decreased compared to the second group, whereas brain vitamin C, vitamin E, erythrocyte GSH-Px and reduced glutathione (GSH) values increased in the fifth group. Brain microsomal GSH levels and EEG records in the third, fourth and fifth groups were restored by the TPM and vitamin E treatment. In conclusion, TPM and vitamin E seems to have protective effects on PTZ-induced blood and brain toxicity by inhibiting free radicals and supporting the antioxidant redox system.  相似文献   

16.
Circadian variation in lipid peroxidation induced by benzene in rats   总被引:1,自引:0,他引:1  
Time-dependent effect of benzene, a potent carcinogenic industrial solvent, on lipid peroxidaiton and associated mechanisms has been studied in liver and kidney of rats. Significant differences were observed in the values of urinary phenol, microsomal malondialdehyde, reduced glutathione (GSH) and cytochrome P4502E1 in rats treated with benzene in morning and evening hours. Higher were the values for urinary phenol and hepatic microsomal malondialdehyde in rats administered benzene in evening hours. Contrarily, higher were the values for GSH and cytochrome P4502E1 in rats treated with benzene in morning hours. Increased microsomal lipid peroxidation has been attributed to low GSH status, whereas increased phenol concentration could be related to low activity of cytochrome P4502E1 in the liver of rats in evening hours. It is concluded that circadian rhythmicity in hepatic drug metabolizing enzyme system and GSH contributes in toxicity of benzene. The results are important from occupational health point of view.  相似文献   

17.
1. GSH efficiently inhibited the ascorbate-stimulated lipid peroxidation of the unsaturated fatty acids in the fresh microsomal fraction and mitochondria of rat liver, whereas the peroxidation in heat-denatured particles was little inhibited. 2. Cysteamine and diethyldithiocarbamate inhibited the peroxidation in both fresh and boiled particles. Thioglycollate and 2-mercaptoethanol had no inhibiting effect. Cysteine and homocysteine both stimulated the lipid peroxidation even in the absence of ascorbate. 3. The added GSH disappeared at nearly the same rate in the presence of fresh and of boiled particles to which ascorbate had been added, although considerably more malonaldehyde was formed in the boiled particles. In the absence of ascorbate little GSH disappeared. 4. It is suggested that the protective effect of GSH against lipid peroxidation depends on the preservation of heat-labile structures in the microsomal fraction and mitochondria.  相似文献   

18.
The ability of coenzyme Q to inhibit lipid peroxidation in intact animals as well as in mitochondrial, submitochondrial, and microsomal systems has been tested. Rats fed coenzyme Q prior to being treated with carbon tetrachloride or while being treated with ethanol excrete less thiobarbituric acid-reacting material in the urine than such rats not fed coenzyme Q. Liver homogenates, mitochondria, and microsomes isolated from rats treated with carbon tetrachloride and ethanol catalyze lipid peroxidation at rates which exceed those from animals also fed coenzyme Q. The rate of lipid peroxidation catalyzed by submitochondrial particles isolated from hearts of young, old, and endurance trained elderly rats was inversely proportional to the coenzyme Q content of the submitochondrial preparation in assays in which succinate was employed to reduce the endogenous coenzyme Q. Reduced, but not oxidized, coenzyme Q inhibited lipid peroxidation catalyzed by rat liver microsomal preparations. These results provide additional evidence in support of an antioxidant role for coenzyme Q.  相似文献   

19.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

20.
R Nordmann  C Ribière  H Rouach 《Enzyme》1987,37(1-2):57-69
Lipoperoxidation, a degradative process of membranous polyunsaturated fatty acids, has been suggested to represent an important mechanism in the pathogenesis of ethanol toxicity on the liver and possibly also on the brain. Catalysis by transition metals, especially iron, is involved in the biosynthesis of free radicals contributing to lipid peroxidation. Although the exact nature of the redox-active iron implicated in this catalysis is still unknown, it has been well established that lipid peroxidation can be prevented in vitro by iron chelators such as desferrioxamine. Deprivation of redox-active iron through desferrioxamine inhibits by about 50% the microsomal oxidation of ethanol in vitro and reduces very significantly in vivo the overall ethanol elimination rate in rats. Administration of desferrioxamine together with ethanol also reduces the ethanol-induced disturbances in the antioxidant defense mechanisms of the hepatocyte. It also reduces in mice both the severity of physical dependence on ethanol and lethality following the acute administration of a narcotic dose of ethanol. Chronic overloading of rats with iron results, on the opposite, in an increased rate of ethanol elimination, although alcohol dehydrogenase and catalase activities are reduced and cytochrome P-450 depleted in the liver of such iron-overloaded animals. The magnitude of the ethanol-induced increase in lipid peroxidation and decrease in the major membranous antioxidant, alpha-tocopherol, is exacerbated in iron-overloaded rats. Several disturbances of iron metabolism have been reported in human alcoholics. Their contribution to ethanol toxicity appears very likely in the case of hepatic siderosis associated with alcohol abuse. Ethanol could however disturb iron metabolism even in the absence of gross abnormalities of the total iron stores. It is suggested that ethanol intoxication could increase cellular redox-active iron, thus contributing to an enhanced steady-state concentration of reactive-free radicals. This oxidative stress would lead to lipoperoxidative damage and cellular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号