首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Escherichia coli, the enzyme called cysteine desulfhydrase (CD), which is responsible for L-cysteine degradation, was investigated by native-PAGE and CD activity staining of crude cell extracts. Analyses with gene-disrupted mutants showed that CD activity resulted from two enzymes: tryptophanase (TNase) encoded by tnaA and cystathionine beta-lyase (CBL) encoded by metC. It was also found that TNase synthesis was induced by the presence of L-cysteine. The tnaA and metC mutants transformed with the plasmid containing the gene for feedback-insensitive serine acetyltransferase exhibited higher L-cysteine productivity than the wild-type strain carrying the same plasmid. These results indicated that TNase and CBL did act on L-cysteine degradation in E. coli cells.  相似文献   

2.
L-cysteine desulthydrase (CD) plays an important role in L-cysteine decomposition.To identify the CD gene in Pseudomonas sp.TS 1138 and investigate its effect on the L-cysteine biosynthetic pathway,the CD gene was cloned from Pseudomonas sp.TS 1138 by polymerase chain reaction (PCR) method.The nucleotide sequence of CD gene was determined to be 1,215 bp,and its homology with other sequences encoding CD was analyzed.Then the CD gene was subcloned into pET-21a(+) vector and expressed in Escherichia coli (E.coli) by isopropyl-β-D-thiogalactopyranoside (IPTG) inducement.The recombinant CD was purified by Ni-NTA His-Bind resin,and its activity was identified by the CD activity staining.The enzymatic properties of the recombinant CD were characterized and its critical role involved in the L-cysteine biosynthetic pathway was also discussed.  相似文献   

3.
Enzymatic synthesis of L-cysteine   总被引:2,自引:0,他引:2  
O-Acetylserine sulfhydrase in the form of a crude extract from Salmonella typhimurium LT2 was used for the production of L-cysteine from L-O-acetylserine and sodium hydrosulfide at pH 7.0 and 25 degrees C. The two substrates have quite different pH stability relationships. O-Acetylserine readily rearranges to N-acetylserine and the rate of this O --> N acyl transfer reaction increases at higher pH, temperature, and concentration of O-acetylserine. On the other hand, sodium hydrosulfide is more soluble at a higher pH. A stirred-tank bioreactor with a continuous substrate feed was employed to overcome this problem. The O-acetylserine feed was stored at its saturation level (2.05M) at pH 5.0, and the sodium hydrosulfide feed was dissolved at 2.05-2.3M without pH adjustment (pH >/= 11.5). Both substrates were simultaneously introduced into the bioreactor. The performance of the bioreactor was optimized by employing an automatic feedback control system to regulate the concentration of O-acetylserine in the bioreactor. This feedback control system was based on the fact that as the bioconversion proceeds, protons are produced along with cysteine. A pH controller thus detected the decrease in pH and activated the substrate pumps. After mixing in the bioreactor, these two substrate solutions behaved as a base due to the high alkalinity of sodium hydrosulfide. Thus, substrate infusion started when the pH was lower than the set point, i.e., the reaction pH, and stopped when the pH was raised higher than the set point. The amount of substrate introduced was determined by the alkalinity of the mixture of the two substrates, which in turn was controlled by the concentration of sodium hydrosulfide. After optimizing the sodium hydrosulfide concentration and the substrate feed rate, the bioconversion gave a productivity of 3.6 g L-cysteine/h/g dry cell weight S. typhimurium, an L-cysteine titer of 83 g/L and a molar yield based on O-acetylserine of 94%.  相似文献   

4.
L-cysteine desulfhydrase (CD) plays an important role in L-cysteine decomposition. To identify the CD gene in Pseudomonas sp. TS1138 and investigate its effect on the L-cysteine biosynthetic pathway, the CD gene was cloned from Pseudomonas sp. TS1138 by polymerase chain reaction (PCR) method. The nucleotide sequence of CD gene was determined to be 1,215 bp, and its homology with other sequences encoding CD was analyzed. Then the CD gene was subcloned into pET-21a(+) vector and expressed in Escherichia coli (E. coli) by isopropyl-β-D-thiogalactopyranoside (IPTG) inducement. The recombinant CD was purified by Ni-NTA His-Bind resin, and its activity was identified by the CD activity staining. The enzymatic properties of the recombinant CD were characterized and its critical role involved in the L-cysteine biosynthetic pathway was also discussed. __________ Translated from Microbiology, 2006, 33(4): 21–26 [译自: 微生物学通报]  相似文献   

5.
ABSTRACT: BACKGROUND: Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli. RESULTS: Because the redox enzymes can reduce the disulfide that forms on proteins, wefirst tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coli L-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (cysI and cysJ) and the L-cysteine synthase gene (cysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (cysC or cysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coli L-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell . CONCLUSIONS: In this work, we showed that Grx1 and NrdH reduce SSC to L-cysteine, and the generated sulfite is then utilized as the sulfur source to produce additional L-cysteine molecule through the sulfate pathway in E. coli. We also found that co-overexpression of NrdH, CysI, and CysK increases L-cysteine production. Our results propose that the enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from SSC is a novel method for improvement of L-cysteine production.  相似文献   

6.
7.
The newly isolated strain Pseudomonas sp. ON-4a converts D,L-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine via N-carbamoyl-L-cysteine. A genomic DNA fragment from this strain containing the gene(s) encoding enzymes that convert D,L-2-amino-delta2-thiazoline-4-carboxylic acid into L-cysteine was cloned in Escherichia coli. Transformants expressing cysteine-forming activity were selected by growth of an E. coli mutant defective in the cysB gene. A positive clone, denoted CM1, carrying the plasmid pCM1 with an insert DNA of approximately 3.4 kb was obtained, and the nucleotide sequence of a complementing region was analyzed. Analysis of the sequence found two open reading frames, ORF1 and ORF2, which encoded proteins of 183 and 435 amino acid residues, respectively. E. coli DH5alpha harboring pTrCM1, which was constructed by inserting the subcloned sequence into an expression vector, expressed two proteins of 25 kDa and 45 kDa. From the analyses of crude extracts of E. coli DH5alpha carrying deletion derivatives of pTrCM1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by enzymatic activity, it was found that the 25-kDa protein encoded by ORF1 was the enzyme L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, which catalyzes the conversion of L-2-amino-delta2-thiazoline-4-carboxylic acid to N-carbamoyl-L-cysteine, and that the 45-kDa protein encoded by ORF2 was the enzyme N-carbamoyl-L-cysteine amidohydrolase, which catalyzes the conversion of N-carbamoyl-L-cysteine to L-cysteine.  相似文献   

8.
The enzyme O-acetylserine sulphydrylase (EC 4.2.99.8) which occurs in the cells of Bacillus sphaericus l-118 can catalyse a β-replacement reaction of 3-chloro-L-alanine in the presence of a high concentration of sodium hydrosulphide to form L-cysteine. By using resting cells, the reaction conditions for L-cysteine production were optimized. Under optimal conditions, 80–85% of the added 3-chloro-L-alanine could be converted to L-cysteine and the highest yield, 70 mg L-cysteine per 1.0 ml reaction mixture, could be achieved.  相似文献   

9.
酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件研究   总被引:1,自引:0,他引:1  
目的:考察酶源保存方式、酶促反应时间、底物pH值、底物浓度、酶浓度、金属离子等因素对酶活力的影响。方法:以假单胞菌(Pseudomonassp.)TS1138为供试菌株,采用酸式茚三酮法测定L-半胱氨酸含量,研究了酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件。结果:TS1138菌株中L-半胱氨酸脱巯基酶具有较高的活性,而且Mg2 、Mn2 、Fe2 、Zn2 、Cu2 等5种金属离子对DL-ATC水解酶酶系有不同程度的抑制,其中Cu2 对该酶系的抑制作用很大。结论:确定了TS1138菌株酶法转化DL-ATC合成L-半胱氨酸的最适酶促反应条件,为酶促反应动力学的研究奠定了基础。  相似文献   

10.
Four rumen fistulated Suffolk wethers were allocated to a 4×4 Latin square designed experiment. High nitrate (1.5 g NaNO3 kg−0.75 body weight), high nitrate with high L-cysteine (0.55 g sulphur equivalent kg−0.75 body weight), low nitrate (0.75 g NaNO3 kg−0.75 body weight), and low nitrate with low L-cysteine (0.275 g sulphur equivalent kg−0.75 body weight) were administered into the rumen through fistulae as a single dose after a morning meal. Gaseous exchanges were monitored by an open circuit respiratory system using a hood over the animal's head. High or low L-cysteine remarkably decreased nitrite production from ruminal reduction of high or low nitrate. Consequently, methaemoglobin formation was suppressed by L-cysteine in both levels of nitrate. Oxygen consumption, carbon dioxide production and metabolic rate were depressed as methaemoglobin was formed. L-cysteine suppressed the pulmonary dysfunction induced by methaemoglobin. L-cysteine equivalent to 60% of the upper allowance of dietary sulphur appeared to be useful as a prophylactic for acute poisoning of nitrate. Thus, dosage of L-cysteine can be adjusted to correspond with the nitrate content in feeds.  相似文献   

11.
DL-2-amino-Delta(2)-thiazolin-4-carbonic acid (DL-ATC) is a substrate for cysteine synthesis in some bacteria, and this bioconversion has been utilized for cysteine production in industry. We cloned a DNA fragment containing the genes involved in the conversion of L-ATC to L-cysteine from Pseudomonas sp. strain BS. The introduction of this DNA fragment into Escherichia coli cells enabled them to convert L-ATC to cysteine via N-carbamyl-L-cysteine (L-NCC) as an intermediate. The smallest recombinant plasmid, designated pTK10, contained a 2.6-kb insert DNA fragment that has L-cysteine synthetic activity. The nucleotide sequence of the insert DNA revealed that two open reading frames (ORFs) encoding proteins with molecular masses of 19.5 and 44.7 kDa were involved in the L-cysteine synthesis from DL-ATC. These ORFs were designated atcB and atcC, respectively, and their gene products were identified by overproduction of proteins encoded in each ORF and by the maxicell method. The functions of these gene products were examined using extracts of E. coli cells carrying deletion derivatives of pTK10. The results indicate that atcB and atcC are involved in the conversion of L-ATC to L-NCC and the conversion of L-NCC to cysteine, respectively. atcB was first identified as a gene encoding an enzyme that catalyzes thiazolin ring opening. AtcC is highly homologous with L-N-carbamoylases. Since both enzymes can only catalyze the L-specific conversion from L-ATC to L-NCC or L-NCC to L-cysteine, it is thought that atcB and atcC encode L-ATC hydrolase and N-carbamyl-L-cysteine amidohydrolase, respectively.  相似文献   

12.
A series of double-prodrugs of L-cysteine, designed to release L-cysteine in vivo and stimulate the biosynthesis of glutathione (GSH), were synthesized. To evaluate the hepatoprotective effectiveness of these double-prodrugs, male Swiss-Webster mice were administered acetaminophen (ACP) (2.45 mmol/kg (360 mg/kg), intraperitoneally (i.p.)). Prodrug (2.50 mmol/kg, i.p. or 1.25 mmol/kg, i.p., depending on the protocol) was administered 1 h before ACP as a priming dose. A supplementary dose of prodrug (2.5 mmol/kg, i.p. or 1.25 mmol/kg, i.p. depending on the protocol) was administered 0.5 h after ACP. The plasma alanine amino transferase (ALT) values, 24 h after ACP administration were transformed to logs and the 95% and 99% confidence intervals of the log values were plotted and compared for each group. Hepatoprotection was assessed by the degree of attenuation of plasma ALT levels. With these multiple dose schedules, the use of 2% carboxymethylcellulose as vehicle for the prodrugs was found to be detrimental; therefore, the prodrugs were dissolved in dilute aqueous base and the pH adjusted for administration. When a priming dose was given 1 h before ACP followed by a supplementary dose 0.5 h after ACP, only N,S-bis-acetyl-L-cysteine, where both the sulfhydryl and amino groups of L-cysteine were functionalized with the acetyl group, was found to be effective in protecting mice against the hepatotoxic effects of ACP. This suggests that these acetyl groups were rapidly hydrolyzed in vivo to liberate L-cysteine. In contrast, N-acetylation of 2(R,S)-methylthiazolidine-4(R)-carboxylic acid (MTCA) and its 2-n-propyl analog (PTCA), or N-acetylation of 2-oxothiazolidine-4-carboxylic acid (OTCA), reduced the hepatoprotective effects relative to the parent MTCA, PTCA, and OTCA, indicating that the release of L-cysteine in vivo from these N-acetylated thiazolidine prodrugs was metabolically unfavorable. The carbethoxy group, whether functionalized on the sulfhydryl or on the amino group of L-cysteine, or on the secondary amino group of MTCA, appears to be a poor "pro-moiety," since these carbethoxylated double-prodrugs of L-cysteine did not protect mice from ACP-induced hepatotoxicity.  相似文献   

13.
14.
He Z  Gao F  Zhong H  Hu Y 《Bioresource technology》2009,100(3):1383-1387
The effect of L-cysteine in different concentrations on the bioleaching of Ni-Cu sulfide and marmatite were studied with a moderately thermophilic, sulfur-oxidizing bacterium, strain of Acidithiobacillus caldus. X-ray diffraction (XRD) observations showed the change of bioleached solid residues and the effect of L-cysteine on the surface charges of minerals. It was found that adding certain amounts of L-cysteine to the leaching system of Ni-Cu sulfide largely enhanced the leaching rate, while L-cysteine inhibited the bioleaching of marmatite by A. caldus. The mechanism of L-cysteine interaction with mineral surfaces was studied by means of zeta potential determination and IR spectra.  相似文献   

15.
Yang L  Shen J  He S  Hu G  Shen J  Wang F  Xu L  Dai W  Xiong J  Ni J  Guo C  Wan R  Wang X 《PloS one》2012,7(2):e31807

Background and Aims

Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs.

Methods

CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR.

Results

The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group.

Conclusion

L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.  相似文献   

16.
The kinetics of conversion of sulfur-containing amino acids L-cystine and L-cysteine to taurin by the enzyme system of cattle liver cells was studied, and a mathematical model was developed. It was shown that L-cystine and L-cysteine conversion obeyed the Michaelis-Menten equations of serial-sequential conversions with regard to inhibition by the final product and inactivation. The yield of taurin under the optimized conditions of L-cystine and L-cysteine conversion (temperature, 40 degrees C; pH 1.5 and 3.0, respectively; and addition of enzyme preparations in five equal portions at 2-h intervals) was in the range 80-85% of the substrate weight.  相似文献   

17.
A study in rats was made of the effects produced by L-cysteine on the acute toxicity of cobalt chloride given orally and intraperitoneally. The decrease in lethality was absolute for the different doses tested, except when the CoCl2 was given orally and L-cysteine intraperitoneally in which only 40% efficiency was obtained. No specially significant changes were observed in the blood parameters of the animals treated with the CoCl2-cysteine complex after one week. Significant differences were noted between serum parameters: glucose, triglycerides and cholesterol, measured in rats after twelve hours of receiving the CoCl2-cysteine complex, compared with the same parameters measured when the CoCl2 was given without complex.  相似文献   

18.
假单胞菌酶法转化DL-ATC合成L-半胱氨酸   总被引:2,自引:0,他引:2  
采用微生物酶转化法制备L-半胱氨酸具有周期短、成本低、区域和立体选择性强、反应条件容易控制、环境友好等特点,与传统的毛发水解以及化学合成工艺相比显示出明显的优越性。本文从假单胞菌产酶条件和酶学性质、DL-ATC生物转化途径、固定化细胞转化工艺、基因工程菌的研究、以及L-半胱氨酸脱巯基酶的研究等5个方面介绍了国内外关于生物转化DL-2-氨基-Δ2-噻唑啉-4-羧酸(DL-ATC)合成L-半胱氨酸的研究进展。  相似文献   

19.
We have developed a new enzymatic assay for determining L-cysteine concentration. The method involves the use of betaC-S lyase from Streptococcus anginosus, which catalyzes the alpha,beta-elimination of L-cysteine to hydrogen sulfide, pyruvate, and ammonia. The production of pyruvate is measured by D-lactate dehydrogenase and NADH. The decrease in NADH was proportional to the L-cysteine concentration up to 1.0 mM. When serum samples were used, within-day and day-to-day coefficient variations were below 4%. This method is simple, and can easily and reliably be used for accurate determination of L-cysteine concentration in serum or other samples.  相似文献   

20.
Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号