首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to evaluate the effects of continuous and interval training on changes in lactate and ventilatory thresholds during incremental exercise. Seventeen males were assigned to one of three training groups: group 1:55 min continuous exercise at approximately 50% maximum O2 consumption (VO2max); group 2: 35 min continuous exercise at approximately 70% VO2max; and group 3: 10 X 2-min intervals at approximately 105% VO2max interspersed with rest intervals of 2 min. All of the subjects were tested and trained on a cycle ergometer 3 day/wk for 8 wk. Lactate threshold (LT) and ventilatory threshold (VT) (in addition to maximal exercise measures) were determined using a standard incremental exercise test before and after 4 and 8 wk of training. VO2max increased significantly in all groups with no statistically significant differences between the groups. Increases (+/- SE) in LT (ml O2 X min-1) for group 1 (569 +/- 158), group 2 (584 +/- 125), and group 3 (533 +/- 88) were significant (P less than 0.05) and of the same magnitude. VT also increased significantly (P less than 0.05) in each group. However, the increase in VT (ml O2 X min-1) for group 3 (699 +/- 85) was significantly greater (P less than 0.05) than the increases in VT for group 1 (224 +/- 52) and group 2 (404 +/- 85). For group 1, the posttraining increase in LT was significantly greater than the increase in VT (P less than 0.05). We conclude that both continuous and interval training were equally effective in augmenting LT, but interval training was more effective in elevating VT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise.  相似文献   

3.
The exercising Thoroughbred horse (TB) is capable of exceptional cardiopulmonary performance. However, because the ventilatory equivalent for O2 (VE/VO2) does not increase above the gas exchange threshold (Tge), hypercapnia and hypoxemia accompany intense exercise in the TB compared with humans, in whom VE/VO2 increases during supra-Tge work, which both removes the CO2 produced by the HCO buffering of lactic acid and prevents arterial partial pressure of CO2 (PaCO2) from rising. We used breath-by-breath techniques to analyze the relationship between CO2 output (VCO2) and VO2 [V-slope lactate threshold (LT) estimation] during an incremental test to fatigue (7 to approximately 15 m/s; 1 m x s(-1) x min(-1)) in six TB. Peak blood lactate increased to 29.2 +/- 1.9 mM/l. However, as neither VE/VO2 nor VE/VCO2 increased, PaCO2 increased to 56.6 +/- 2.3 Torr at peak VO2 (VO2 max). Despite the presence of a relative hypoventilation (i.e., no increase in VE/VO2 or VE/VCO2), a distinct Tge was evidenced at 62.6 +/- 2.7% VO2 max. Tge occurred at a significantly higher (P < 0.05) percentage of VO2 max than the lactate (45.1 +/- 5.0%) or pH (47.4 +/- 6.6%) but not the bicarbonate (65.3 +/- 6.6%) threshold. In addition, PaCO2 was elevated significantly only at a workload > Tge. Thus, in marked contrast to healthy humans, pronounced V-slope (increase VCO2/VO2) behavior occurs in TB concomitant with elevated PaCO2 and without evidence of a ventilatory threshold.  相似文献   

4.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.4+/-1.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.91+/-0.10 l/min (for the VE/VO2) vs. 1.89+/-0.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.67+/-0.1 l/min (for the lactate) vs. 1.37+/-0.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.  相似文献   

5.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

6.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

7.
Dynamic exercise training of the elderly increases maximal O2 uptake (VO2max); however, the effects of training on the ventilation threshold (VET) have not been studied. VET was identified as the final point before the ventilatory equivalent for O2 (VE/VO2) increased, without an increase in the ventilatory equivalent for CO2 (VE/VCO2). Inactive elderly males (mean age, 62 yr) were randomly assigned to a control (C, n = 44) or activity (A, n = 45) group. VO2max and VET were determined from an incremental treadmill test. Initial VO2max was not different between the C (2.34 +/- 0.42 l X min-1) and A (2.28 +/- 0.44 l X min-1) groups, nor was there a significant difference in the VO2 at the VET (C = 1.39 +/- 0.26 l X min-1; A = 1.31 +/- 0.23 l X min-1). The activity group trained for 30 min/day, 3 days/wk at an intensity of approximately 65-80% of VO2max. After 1 yr of training the activity group exhibited an 18% increase in VO2max (A = 2.70 +/- 0.54 l X min-1), but the change in VET was not significant (A = 1.39 +/- 0.28 l X min-1). There was no significant change in VO2max (C = 2.45 +/- 0.68 l X min-1) or VET (C = 1.38 +/- 0.31 l X min-1) in the control group. VET/VO2max declined significantly in the activity group (from 58 to 52% of VO2max). Change in VET/VO2max with training was not correlated with the initial VO2max value. We conclude that increases in aerobic capacity are more readily effected than alterations of the VET in elderly subjects.  相似文献   

8.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

9.
This study examined the influence of acute altitude (AL) exposure alone or in combination with metabolic acid-base manipulations on the exercise ventilatory and blood lactate responses. Four subjects performed a 4 min, 30 W incremental test to exhaustion at ground level (GL) and a 4 min, 20 W incremental test during three acute exposures to a simulated altitude of 4200 m; (i) normal (NAL), (ii) following 0.2 g.kg-1 ingestion of sodium bicarbonate (BAL), and (iii) following 0.5 g.day-1 ingestion of acetazolamide for 2 days prior to exposure (AAL). VE.VO2-1 increased progressively throughout the incremental tests at AL and the minimum value was not related to a change in the blood lactate response. In contrast, the VE.VCO2-1 decreased initially to reach a minimum value at the same power output for each altitude trial and was related to a lactate threshold defined by a log-log transformation (r = 0.78). This transformation of the blood lactate data was not influenced by the altered acid-base states. The relative exercise intensity corresponding to both a delta lactate of 1 mM and an absolute lactate of 4 mM was significantly increased during the AAL (79.9 +/- 12.9 and 93.9 +/- 13.7% VO2max, respectively) compared with NAL (59.1 +/- 5.5 and 78.0 +/- 5.8% VO2max, respectively). These data suggest that strong relationships exist between the ventilatory and blood lactate response during AL exposure and altered acid-base states. Further, it is concluded that, unless the acid-base status is known, the use of an absolute or delta lactate value to compare submaximal exercise should be interpreted with caution.  相似文献   

10.
The purpose of this investigation was to determine whether the onset of lactate acidosis is responsible for the increase in ventilatory equivalent (VE/VO2) during exercise of increasing intensity. Eight male subjects performed maximal incremental exercise tests on a cycle ergometer on two separate occasions. For the control (C) treatment, the initial work rates consisted of 4 min of unloaded pedaling (60 rpm) and 1 min of pedaling at a work rate of 30 W. Thereafter, the work rate was increased each minute by 22 W until volitional fatigue. Venous blood samples were taken before the onset of exercise and at the end of each work rate for determination of pH and lactate. Ventilatory parameters at each work rate were also monitored. Before the experimental treatment (E), the subjects performed two 3-min work bouts at high intensity (210-330 W) on the cycle ergometer in order to prematurely raise blood lactate levels and lower blood pH. The same incremental exercise test as C was then performed. The results indicated that the increase in VE/VO2 occurred at similar work rates and %VO2max although the venous H+ and lactate concentrations were significantly elevated during the E treatment. These results suggest that a decrease in the blood pH resulting from blood lactate accumulation is not responsible for the increase in VE/VO2 during incremental exercise.  相似文献   

11.
The purpose of this study was to determine the effect of training on the rating of perceived exertion (RPE) at the ventilatory threshold. College students were assigned to either training (n = 17) or control (n = 10) groups. Trainers completed 18 interval training sessions (five X 5 min cycling at 90-100% VO2max) and 8 continuous training sessions (40 min running or cycling) in 6 weeks. Pre- and post-training, cardiorespiratory, metabolic, and perceptual variables were measured at the ventilatory threshold during graded exercise tests on a cycle ergometer. Ventilatory threshold was that point above which VE X VO2-1 increased abruptly relative to work rate. Post-training means of trained and control subjects were compared using analysis of covariance, with pre-training values as covariates. Following training, the adjusted means for the trained subjects were significantly greater (p less than 0.05) than for controls for VO2max (6%), and for work rate (20%), VO2 (23%), and %VO2max (13%) at the ventilatory threshold. However, adjusted means for RPE at the ventilatory threshold were not significantly different (2%). Both before and after training, exercise at the ventilatory threshold was perceived as 'somewhat hard' to 'hard' (RPE = 13-15) by both groups. The relationship between RPE and %VO2max was altered by training, with trained subjects having a lower RPE at a given %VO2max. It is concluded that RPE at the ventilatory threshold is not affected by training, despite that after training the ventilatory threshold occurs at a higher work rate and is associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

12.
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.  相似文献   

13.
The purpose of this study was to examine the effect of endurance training on oxygen uptake (VO(2)) kinetics during moderate [below the lactate threshold (LT)] and heavy (above LT) treadmill running. Twenty-three healthy physical education students undertook 6 wk of endurance training that involved continuous and interval running training 3-5 days per week for 20-30 min per session. Before and after the training program, the subjects performed an incremental treadmill test to exhaustion for determination of the LT and the VO(2 max) and a series of 6-min square-wave transitions from rest to running speeds calculated to require 80% of the LT and 50% of the difference between LT and maximal VO(2). The training program caused small (3-4%) but significant increases in LT and maximal VO(2) (P<0.05). The VO(2) kinetics for moderate exercise were not significantly affected by training. For heavy exercise, the time constant and amplitude of the fast component were not significantly affected by training, but the amplitude of the VO(2) slow component was significantly reduced from 321+/-32 to 217+/-23 ml/min (P<0.05). The reduction in the slow component was not significantly correlated to the reduction in blood lactate concentration (r = 0. 39). Although the reduction in the slow component was significantly related to the reduction in minute ventilation (r = 0.46; P<0.05), it was calculated that only 9-14% of the slow component could be attributed to the change in minute ventilation. We conclude that the VO(2) slow component during treadmill running can be attenuated with a short-term program of endurance running training.  相似文献   

14.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

15.
The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.  相似文献   

16.
Ventilatory responses to progressive exercise, with and without an inspiratory elastic load (14.0 cmH2O/l), were measured in eight healthy subjects. Mean values for unloaded ventilatory responses were 24.41 +/- 1.35 (SE) l/l CO2 and 22.17 +/- 1.07 l/l O2 and for loaded responses were 24.15 +/- 1.93 l/l CO2 and 20.41 +/- 1.66 l/l O2 (P greater than 0.10, loaded vs. unloaded). At levels of exercise up to 80% of maximum O2 consumption (VO2max), minute ventilation (VE) during inspiratory elastic loading was associated with smaller tidal volume (mean change = 0.74 +/- 0.06 ml; P less than 0.05) and higher breathing frequency (mean increase = 10.2 +/- 0.98 breaths/min; P less than 0.05). At levels of exercise greater than 80% of VO2max and at exhaustion, VE was decreased significantly by the elastic load (P less than 0.05). Increases in respiratory rate at these levels of exercise were inadequate to maintain VE at control levels. The reduction in VE at exhaustion was accompanied by significant decreases in O2 consumption and CO2 production. The changes in ventilatory pattern during extrinsic elastic loading support the notion that, in patients with fibrotic lung disease, mechanical factors may play a role in determining ventilatory pattern.  相似文献   

17.
The purpose of this study was to set up a protocol of intermittent exercise to train young basketball players. Twenty-one players were asked to complete (a) an incremental test to determine maximal oxygen uptake (VO2max), the speed at the ventilatory threshold (vthr) and the energy cost of "linear" running (Cr) and (b) an intermittent test composed of 10 shuttle runs of 10-second duration and 30-seconds of recovery (total duration: about 6 minutes). The exercise intensity (the running speed, vi) was set at 130% of vthr. During the intermittent tests, oxygen uptake (VO2) and blood lactate concentration (Lab) were measured. The average pretraining VO2 calculated for a single bout (131 ± 9 ml · min(-1) kg(-1)) was about 2.4 times greater than the subjects' measured VO2max (54.7 ± 4.6 ml · min(-1) · kg(-1)). The net energy cost of running (9.2 ± 0.9 J · m(-1) · kg(-1)) was about 2.4 times higher than that measured at constant "linear" speed (3.9 ± 0.3 J · m(-1) · kg(-1)). The intermittent test was repeated after 7 weeks of training: 9 subjects (control group [CG]) maintained their traditional training schedule, whereas for 12 subjects (experimental group [EG]) part of the training was replaced by intermittent exercise (the same shuttle test as described above). After training, the VO2 measured during the intermittent test was significantly reduced (p < 0.05) in both groups (-10.9% in EG and - 4.6 in CG %), whereas Lab decreased significantly only for EG (-31.5%). These data suggest that this training protocol is effective in reducing lactate accumulation in young basketball players.  相似文献   

18.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

19.
The mechanisms responsible for the oxygen uptake (VO2) slow component during high-intensity exercise have yet to be established. In order to explore the possibility that the VO2 slow component is related to the muscle contraction regimen used, we examined the pulmonary VO2 kinetics during constant-load treadmill and cycle exercise at an exercise intensity that produced the same level of lactacidaemia for both exercise modes. Eight healthy subjects, aged 22-37 years, completed incremental exercise tests to exhaustion on both a cycle ergometer and a treadmill for the determination of the ventilatory threshold (defined as the lactate threshold, Th1a) and maximum VO2 (VO2max). Subsequently, the subjects completed two "square-wave" transitions from rest to a running speed or power output that required a VO2 that was halfway between the mode-specific Th1a and VO2max. Arterialised blood lactate concentration was determined immediately before and after each transition. The VO2 responses to the two transitions for each exercise mode were time-aligned and averaged. The increase in blood lactate concentration produced by the transitions was not significantly different between cycling [mean (SD) 5.9 (1.5) mM] and running [5.5 (1.6) mM]. The increase in VO2 between 3 and 6 min of exercise; (i.e. the slow component) was significantly greater in cycling than in running, both in absolute terms [290 (102) vs 200 (45) ml x min(-1); P<0.05] and as a proportion of the total VO2 response above baseline [10 (3)% vs 6 (1)%; P < 0.05]. These data indicate that: (a) a VO2 slow component does exist for high-intensity treadmill running, and (b) the magnitude of the slow component is less for running than for cycling at equivalent levels of lactacidaemia. The greater slow component observed in cycling compared to running may be related to differences in the muscle contraction regimen that is required for the two exercise modes.  相似文献   

20.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号