首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of mitogens to induce cytotoxic effector reactions in vitro has been studied to investigate basic mechanisms of cell mediated cytotoxicity. The type of mitogen, the source of effector cells, and the nature of the target cell are all critical variables in determining the characteristics of the cytotoxic event in this system. Spleen cells and bone marrow cells from congenitally athymic nude mice as well as from their heterozygous control littermates were capable of mediating lysis of RBC targets in the presence of either PHA or Con A. Removal of macrophages from these effector populations by adherence columns, density gradient centrifugation, and carrageenan treatment failed to abrogate this cytotoxic capacity. However, purified macrophages themselves also were capable of mediating mitogen induced killing of RBC targets, although the kinetics of this cytotoxicity were substantially different from that induced by lymphocytes. In contrast to these observations, the capacity of mitogen stimulated cells to kill metabolically active complex targets like the P815 mastocytoma or cultured L cells appears to be exclusively a T lymphocyte dependent function. In addition, blastogenic transformation of the effector cells with the T cell mitogens PHA and Con A, but not with the B cell mitogen LPS, leads to enhanced killing of these complex targets. These data suggest that mitogen or lectin induced cellular cytotoxicity can detect at least three different active effector cell types (B cells, T cells, and macrophages) acting via at least four different mechanisms.  相似文献   

2.
A primary in vitro sensitization system employing a chromium release assay was utilized to investigate reactivity of murine spleen cells toward syngeneic ultraviolet (uv) light induced fibrosarcomas. These tumors are immunologically rejected in vivo when implanted into normal syngeneic mice but grow progressivly when implanted into syngeneic mice that had previously been irradiated with subcarcinogenic levels of uv light. Following appropriate sensitization, spleen cells from both normal and uv irradiated mice are capable of developing cytotoxic lymphocytes in vitro against the uv induced tumors. It was subsequently discovered that in situ uv induced tumors all contained macrophages of host origin that became demonstrable only after enzymatic dissociation of the tumor tissue. These macrophages were immunologically active in vitro as their presence in the stimulator cell population was necessary to achieve an optimum anti-tumor cytotoxic response following in vitro sensitization. Anti-tumor reactivity generated by mixing spleen cells and tumor cells in the absence of tumor derived macrophages could be greatly enhanced by the addition of normal syngeneic peritoneal macrophages. When in vitro anti-tumor reactivity of spleen cells from normal and uv treated mice was compared under these conditions we again found no significant difference in the magnitude of the responses. In addition, the cytotoxic cells generated in response to uv induced tumors appeared to be highly cross reactive with respect to their killing potential. Cross reactive killing was observed between all uv induced tumors tested as well as with a syngeneic benz[a]pyrene (BP) induced fibrosarcoma. No cytotoxicity was observed against normal syngeneic PEC's even through these cells were shown to be susceptible to lysis by anti-H-2k effector cells. It was concluded that: (a) A significant number of host-derived macrophages are present in uv tumor tissue. (b) These macrophages are important for the in vitro generation of tumor specific cytotoxicity. (c) Spleen cells from uv treated mice are capable of recognizing and responding against uv tumor associated antigens in vitro. Cytotoxic effector cells generated in response to uv induced tumors appear to have specificity for tumor associated antigens (TAA) present on all uv tumors tested as well as a syngeneic BP induced tumor. The relationship between in vivo and in vitro reactivity against uv tumors is discussed.  相似文献   

3.
Immunization can prevent tumor growth, but the effector cells directly responsible for tumor cell killing in immunized hosts remain undetermined. The present study compares tumor grafts that progress in naive syngeneic rats with the same grafts that completely regress in hosts preimmunized with an immunogenic cell variant. The progressive tumors contain only a few macrophages that remain at the periphery of the tumor without direct contact with the cancer cells. These macrophages do not kill tumor cells in vitro. In contrast, tumors grafted in immunized hosts and examined at the beginning of tumor regression show a dramatic infiltration with mature macrophages, many of them in direct contact with the cancer cells. These macrophages are strongly cytotoxic for the tumor cells in vitro. In contrast to macrophages, tumor-associated lymphocytes are not directly cytotoxic to the tumor cells, even when obtained from tumor-immune rats. However, CD4(+) and CD8(+) T cells prepared from the regressing tumors induce tumoricidal activity in splenic macrophages from normal or tumor-bearing rats and in macrophages that infiltrate progressive tumors. These results strongly suggest that the main tumoricidal effector cells in preimmunized rats are macrophages that have been activated by adjacent tumor-immune lymphocytes.  相似文献   

4.
Normal peritoneal cells or spleen cells from C57BL mice could not lyse SRBC in an ADCC assay. After intraperitoneal injection of Adriamycin, BCG or thioglycolate the ADCC of peritoneal cells toward antibody-coated SRBC was elevated to 30% in contrast to the ADCC of spleen cells. However, peritoneal cells but not spleen cells of mice immunized with allogenic tumor cells (DBA SL2) showed ADCC levels at least two times higher than the levels observed after stimulation by other agents. Maximal ADCC levels (55.8%) were observed 10 to 15 days after immunization. Direct cytotoxicity towards SRBC increased to a maximum of 17.7% at 9 days after immunization. The effector cells in this system are thought to be macrophages, for ADCC activity was only present in the plastic-adherent cell fraction. Cell to cell contact was necessary for ADCC to occur; nonsensitized erythrocytes were not lysed when added to a mixture of effector cells and sensitized erythrocytes. Concentrations of antibody of 1 pg/ml were sufficient to induce ADCC, and effector cell to target cell ratios could be as low as 0.05. The finding that macrophages of mice immunized with allogenic tumor cells exhibit higher ADCC levels than macrophages elicited in other ways can contribute to the investigation of combined cancer therapy with antibodies and biological response modifiers.  相似文献   

5.
Infiltration of immune effector cells in tumors is critical for antitumor immune responses. However, what regulates immune cell infiltration of tumors remains to be identified. Stat3 is constitutively activated with high frequency in diverse cancers, promoting tumor cell growth and survival. Blocking Stat3 signaling in tumors in vivo results in tumor growth inhibition that involves killing of nontransfected tumor cells and infiltration of immune effector cells, suggesting that Stat3 activity in tumor cells might affect immune cell recruitment. However, dying tumor cells can also attract immune cells. In this study, we show in isogenic murine melanomas that natural Stat3 activity is associated with tumor growth and reduction of T cell infiltration. Blocking Stat3 signaling in the melanoma cells containing high Stat3 activity results in expression of multiple chemoattractants, leading to increased migration of lymphocytes, NK cells, neutrophils, and macrophages. In addition, blocking Stat3 triggers tumor cells to produce soluble factors capable of activating macrophage production of NO in vitro and in vivo. TNF-alpha and IFN-beta, which are secreted by Stat3-inhibited tumor cells, are able to activate macrophage NO production, whereas neutralizing TNF-alpha in the tumor supernatant from Stat3-blocked tumor cells abrogates nitrite production. Moreover, interrupting Stat3 signaling in tumor cells leads to macrophage-mediated, nitrite-dependent cytostatic activity against nontransduced tumor cells. These results suggest that tumor Stat3 activity affects recruitment of diverse immune effectors and it can be manipulated to activate the effector phase of innate immune responses.  相似文献   

6.
Summary The spleens of mice with large M-1 fibrosarcomas contain two populations of suppressor cells with the properties of macrophages and T cells. In this study, we tested the effect of indomethacin on suppressor cell activation and effector function. Neither the activation nor the effector function of the suppressor macrophages was inhibited by indomethacin, and the activity of suppressor macrophages correlated with the tumor size. In contrast, the treatment of tumor-bearing mice with indomethacin from the day of injection of tumor cells completely blocked the in vivo activation of suppressor T cells. Indomethacin did not, however, depress suppressor T cell activity if mice were treated only during the third week of tumor growth. The effector function of the suppressor T cells, as assessed in mixing assays, was partially blocked by indomethacin, while selective suppression by low-molecular-weight factors was completely blocked if indomethacin was present in the cultures. Furthermore, the in vitro activation of suppressor cells by soluble factors secreted by tumor-bearer spleen cells was completely blocked by indomethacin, and this inhibition was reversed by prostaglandin E1. These data are consistent with the hypothesis that prostaglandins are involved in the activation, but not the effector function, of tumor-activated suppressor T cells.  相似文献   

7.
IgA antibodies constitute an important part of the mucosal immune system, but their immunotherapeutic potential remains rather unexplored, in part due to biotechnological issues. For example, the IgA2m(1) allotype carries an unusual heavy and light chain pairing, which may confer production and stability concerns. Here, we report the generation and the biochemical and functional characterization of a P221R-mutated IgA2m(1) antibody against the epidermal growth factor receptor (EGFR). Compared with wild type, the mutated antibody demonstrated heavy chains covalently linked to light chains in monomeric as well as in joining (J)-chain containing dimeric IgA. Functional studies with wild type and mutated IgA2m(1) revealed similar binding to EGFR and direct effector functions such as EGFR down-modulation and growth inhibition. Furthermore, both IgA molecules triggered similar levels of indirect tumor cell killing such as antibody-dependent cell-mediated cytotoxicity (ADCC) by isolated monocytes, activated polymorphonuclear cells, and human whole blood. Interestingly, the dimeric IgA antibodies demonstrated higher efficiency in direct as well as in indirect effector mechanisms compared with their respective monomeric forms. Both wild type and mutated antibody triggered effective FcαRI-mediated tumor cell killing by macrophages already at low effector to target cell ratios. Interestingly, also polarized macrophages mediated significant IgA2-mediated ADCC. M2 macrophages, which have been described as promoting tumor growth and progression, may convert to ADCC-mediating effector cells in the presence of EGFR-directed antibodies. In conclusion, these results provide further insight into the immunotherapeutic potential of recombinant IgA antibodies for tumor immunotherapy and suggest macrophages as an additional effector cell population.  相似文献   

8.
Culture of spleen cells for 5 days has previously been shown to result in the generation of strongly adherent cells from nonadherent precursors. In the current report it is shown that the majority (85-95%) of adherent cells are Mac-1+, FcR+, Thy 1.2- macrophages. Expression of effector activity by these macrophages requires exposure to activating signals. Coculture of the macrophages with Con A-stimulated spleen cells results in the expression of cytostatic activity against lymphocytic and monocytic tumor cell lines. Significant cytostatic activity is apparent within 6 hr after addition of the activating cells. Culture supernates of Con A-stimulated spleen cells (CAS-CM) are not effective in inducing cytostatic activity in the adherent macrophage population either alone or in the presence of additional Con A. However, stimulation of the culture generated macrophages with LPS in the presence of CAS-CM does induce cytostatic activity. The effector cell must be metabolically active in order to effect cytostasis insofar as heat fixation of the culture generated macrophage population eliminates effector activity. Proliferation of the tumor cells is significantly reduced after a 4-hr incubation period with the activated macrophages and is reduced two- to threefold after an 8- to 12-hr incubation period. The cytostatic effect is rapidly reversible. Proliferative activity of the tumor cells returned to control level within 12-24 hr after removal from activated macrophages. Cell cycle analysis indicated that the target cells were not arrested in a single stage of cell cycle, although an increase in frequency of cells in G1-phase was observed. Fluorescence analysis of bromodeoxyuridine (BrdU) incorporation rate demonstrated that the rate of DNA synthesis was reduced in all of the cells in the target population and that the mean rate of BrdU incorporation of the inhibited cells was three- to fivefold lower than control cells. RNA and protein synthesis were not affected to the same degree as DNA synthesis. The cytostatic effect was not mediated by prostaglandins or thymidine insofar as addition of indomethacin and 2-deoxycytidine did not prevent the cytostatic activity of the macrophages. The supernates of activated macrophages contained little inhibitory activity especially when indomethacin was included in the culture medium (19% inhibition of tumor cell proliferation by 1:1 dilution of supernate). The activity that was present could be eliminated by dialysis against fresh culture medium using Spectropor membranes with a 1000-Da molecular cutoff.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The implantation of small pieces of human primary lung tumor biopsy tissue into SCID mice results in a viable s.c. xenograft in which the tissue architecture, including tumor-associated leukocytes, tumor cells, and stromal cells, is preserved in a functional state. By monitoring changes in tumor volume, gene expression patterns, cell depletion analysis, and the use of function-blocking Abs, we previously established in this xenograft model that exogenous IL-12 mobilizes human tumor-associated leukocytes to kill tumor cells in situ by indirect mechanisms that are dependent upon IFN-gamma. In this study immunohistochemistry and FACS characterize the early cellular events in the tumor microenvironment induced by IL-12. By 5 days post-IL-12 treatment, the constitutively present human CD45(+) leukocytes have expanded and infiltrated into tumor-rich areas of the xenograft. Two weeks post-treatment, there is expansion of the human leukocytes and complete effacement of the tumor compared with tumor progression and gradual loss of most human leukocytes in control-treated xenografts. Immunohistochemical analyses reveal that the responding human leukocytes are primarily activated or memory T cells, with smaller populations of B cells, macrophages, plasma cells, and plasmacytoid dendritic cells capable of producing IFN-alpha. The predominant cell population was also characterized by FACS and was shown to have a phenotype consistent with a CD4(+) effector memory T cell. We conclude that quiescent CD4(+) effector memory T cells are present within the tumor microenvironment of human lung tumors and can be reactivated by the local and sustained release of IL-12 to proliferate and secrete IFN-gamma, leading to tumor cell eradication.  相似文献   

10.
Summary The present study was undertaken to determine the factors that influence antibody-mediated cytotoxicity during immunotherapy of virally transformed tumor cells. As model a Rauscher-virus-induced myeloid leukemic cell line of BALB/c origin (RMB-1) was used, which forms disseminated tumors, when inoculated intravenously in BALB/c mice. As previously reported, prolonged survival was obtained when tumor-bearing mice were treated in vivo with a single high dose of a tumor-specific IgG2a monoclonal antibody. This study shows that antibody-dependent cellular cytotoxicity is an important mechanism involved in tumor cell destruction. Since in vitro studies showed that peritoneal macrophages were capable of killing RMB-1 cells in the presence of tumor-specific monoclonal antibody and since in the tumors of mice treated with monoclonal antibody a high influx of macrophages was observed histologically, it is likely that macrophages play an important effector role in elimination of tumor cells. Successful therapy in C5-complement-deficient tumor-bearing mice suggests that complement-dependent cytotoxicity does not play a major role. In nude (T-cell-deficient) mice the therapeutic effect of tumor-specific IgG2a antibody was significantly less than in immunocompetent mice. Although infiltration analysis of tumors of treated and untreated mice showed equally low numbers of helper-T and suppressor/cytotoxic T-cells, the mortality studies of T-cell-deficient and immunocompetent mice indicate that T-cells play a substantial, auxillary role during antibody-mediated, tumor destruction in our model.  相似文献   

11.
The effector mechanism of immune spleen cells against syngeneic TMT mammary tumor cells was analyzed in vitro. C3H/He mice were first inoculated with TMT tumor cells, and then the tumors were x-irradiated with 2000 rad 1 wk after the inoculation. Spleen cells from these treated mice inhibited the growth of tumor cells in vitro when assessed by (3H)-TdR incorporation by tumor cells (cytostatic activity). The same spleen cells did not have any cytotoxic activity on TMT tumor cells detected by a 51Cr-release assay. The cytostatic activity was mediated by Lyt-1+23- T cells. The purified T cells alone could not inhibit the growth of tumor cells, but accessory cells were required for the induction of cytostatic T cell activity. The accessory cells were Ia-positive, macrophage-like adherent cells. Furthermore, both T cells and macrophages were also required for the inhibition of tumor growth even after the spleen cells were activated in vitro. These results suggest T cells and macrophages play an important role in the effector mechanism against TMT mammary tumor cells. The mechanism of cytostasis by T cells and macrophages was discussed from the standpoint of the cellular interaction.  相似文献   

12.
Summary DBA/2 mice were immunized i.p. against syngeneic SL2 lymphosarcoma cells. At various days after the last immunization peritoneal and spleen lymphocytes were collected. The lymphocyte suspensions were enriched for T-cells by nylon wool filtration.The peritoneal T-cells from immunized mice (a) expressed direct specific antitumor cytotoxicity in vitro, (b) induced macrophage cytotoxicity in vitro, and (c) exerted tumor neutralization measured in a Winn-type assay. Spleen T-cells from these immunized mice (a) expressed no direct specific antitumor cytotoxicity in vitro, (b) only induced moderate macrophage cytotoxicity in vitro, but (c) exerted tumor neutralization in a Winn assay.For effective tumor neutralization in vivo effector target cell ratios of 1000:1 were required. When the effector/target ratio of 1000:1 was maintained but the absolute numbers of effector and target cells were lowered from 106 to 105 lymphocytes and 103 to 102 target cells respectively, no tumor neutralization was obtained.The major effect of the sensitized-transferred T-lymphocytes seemed to be the induction of cytotoxic macrophages in the (naive) recipient mice, as the peritoneal macrophages collected from the recipient mice 7 days after i.p. injection of a mixture of sensitized T-cells and tumor cells were cytotoxic. Purified peritoneal T-lymphocytes collected from these recipient mice were able to induce macrophage cytotoxicity in vitro but expressed no cytotoxic T-cell activity.In conclusion, our results show that in the tumor system used, tumor neutralization after transfer of sensitized lymphocytes is not dependent on the presence of cytotoxic T-lymphocytes. Lymphocytes with the strongest potency to render macrophages cytotoxic (in vitro and in vivo) also induce the best tumor neutralization in vivo, suggesting an important role for host macrophages as antitumor effector cells.  相似文献   

13.
The effect of cytochalasin A and B, colchicine and vinblastine on tumor cell killing by macrophages activated in vitro with lymphocyte mediators was examined. Both cytochalasins reversibly inhibited the killing of tumor cells by activated macrophages. Kinetic studies with cytochalasin B suggested that this drug exerts its effect on an early step of the cytotoxic process. Additional studies revealed that the drug inhibited the binding of tumor cells by activated macrophages.Colchicine inhibited both the binding and the killing of tumor cells by activated macrophages, whereas its structural analogue, lumicolchicine, had no effect on either macrophage function.Vinblastine also inhibited the binding and killing of tumor cells. However, this drug no longer inhibited tumor cell binding at low concentrations (<10?6M) that still inhibited tumor cell killing. Further, vinblastine inhibited tumor cell killing when added late to an ongoing cytolytic reaction.These results suggest that the cytochalasins, colchicine and vinblastine inhibit macrophage mediated cytotoxicity by preventing intimate contact between the effector macrophages and their targets. In addition, vinblastine also appears to inhibit a later step of the cytolytic process, possibly the secretion of a cytotoxic macrophage product.  相似文献   

14.
The growth of the syngeneic tumor Acatol in BALB/c mice was retarded if the animals were pretreated with BCG or antilymphocyte serum (ATS). Combined use of BCG and ATS led to a significantly more powerful retardation as compared to the effect produced by each factor alone. Using the adoptive transfer of splenocytes from treated mice it was shown that tumor growth suppression is effected by the cell types other than T lymphocytes and macrophages. It is probable that the effector cells within the given system are K cells and natural killer cells. The results attest to a possibility of search for a two-directional action on the immune system of the tumor host, which would stimulate antitumor effector cells and inhibit the activity of suppressors, particularly that of T suppressors.  相似文献   

15.
A search was made for the lymphoid cell type(s) which are the source of immune RNA (I-RNA) capable of transferring tumor-specific cell-mediated cytotoxicity (CMC). Hartley guinea pigs were immunized with syngeneic murine fibrosarcomas (BP-10 or BP-11) induced by 3,4-benzo(a)pyrene in C3H/HeJ mice, and the I-RNA was extracted individually from their spleens, lymph nodes, and peritoneal exudate (PE) cells. All three I-RNA preparations were able to convert normal C3H/HeJ mouse lymphocytes to effector cells significantly cytolytic to the specific syngeneic mouse tumor in vitro. Furthermore, lymphocytes and macrophages were purified from the spleens, lymph nodes, and PE cells of tumor-immunized guinea pigs. I-RNA was extracted from these purified cell populations and also from the pooled guinea pig lymphoid tissues. Normal C3H/HeJ lymphocytes were incubated with each type of I-RNA and tested in vitro for CMC against the specific tumor cells. Significant CMC against BP-10 targets was observed with mouse lymphocytes incubated with I-RNA extracted from pooled lymphoid tissues of BP-10 tumor-immunized guinea pigs. There was a reduced but still significant CMC when mouse lymphocytes were incubated with I-RNA extracted from purified guinea pig lymphocytes, whereas there was a markedly increased CMC when the I-RNA was extracted from purified guinea pig macrophages. As indicated by sucrose density gradient analysis, the lesser effectiveness of lymphocyte I-RNA was not due to RNA degradation resulting from lymphocyte purification or I-RNA extraction. Treatment of all types of I-RNA with RNase abrogated the transfer of CMC, whereas treatment of I-RNA with DNase or pronase did not. RNA extracted from the lymphoid tissues of guinea pigs immunized with complete Freund's adjuvant without tumor was ineffective. Mouse lymphocytes incubated with BP-10 macrophage I-RNA destroyed BP-10 but not BP-11 tumor cells, whereas lymphocytes incubated with BP-11 macrophage I-RNA killed BP-11 but not BP-10 tumor cells, thus indicating tumor specificity of the immunity transferred by macrophage I-RNA. Our results suggest that macrophages are the principal source of I-RNA capable of transferring tumor-specific CMC.  相似文献   

16.
The effect of inhibitors of protein synthesis on the killing of tumor cells by in vitro activated macrophages was determined. Cytotoxicity was inhibited by concentrations of puromycin, pactamycin, and actinomycin D that almost completely inhibited protein synthesis by guinea pig macrophages, but not by concentrations of drug that inhibited protein synthesis by only ± 50%. Cytotoxicity was inhibited when the effector macrophages were pretreated with the metabolic inhibitors, but not when the drugs were added 30 to 60 min after the initiation of the reaction. Pretreatment with puromycin or pactamycin also markedly inhibited the binding of tumor cells by mediator activated macrophages. These results are consistent with the hypothesis that one possible mechanism by which inhibitors of protein synthesis inhibit macrophage mediated cytotoxicity is by inhibiting close contact between effector and target cells. The finding that pretreatment of activated macrophages with trypsin also inhibits tumor cell killing suggests that protein synthesis may be necessary to maintain an adequate number of “recognition structures” on the macrophage membrane, structures that mediate the initial contact between the activated macrophage and the target tumor.  相似文献   

17.
The cytotoxic potential of rabbit peripheral blood monocytes and alveolar macrophages in antibody-dependent cellular cytotoxicity (ADCC) toward both erythrocyte (RBCox) and tumor cell (CEM T-lymphoblast) targets was examined. ADCC was measured in a 4-hr 51Cr-release assay. Alveolar macrophages were more efficient at killing the tumor cell targets (optimally sensitized with rabbit antisera) than monocytes at similar effector cell/target cell (ET) ratios. Tumor cell targets sensitized with seven different antisera (anti-CEM) were lysed by alveolar macrophages but not by the monocytes. In marked contrast, the monocytes were more effective at lysing the sensitized erythrocyte target cells. The degree of cytolysis of RBCox and CEM was dependent on the ET ratio and the degree of sensitization of these target cells. It was demonstrated that the effector cell selectivity in ADCC was directly related to their ability or inability to bind the sensitized target cells as determined by Fc-receptor rosette formation. The transition from monocyte to macrophage may, therefore, have resulted in an alteration in the criteria necessary for Fc-receptor binding to antibody-sensitized target cells and subsequent ADCC.  相似文献   

18.
19.
Spontaneous cytotoxicity of macrophages against pancreatic islet cells   总被引:7,自引:0,他引:7  
Activated peritoneal macrophages were found to lyse syngeneic [3H]leucine-labeled pancreatic islet cells or rat insulinoma cells after 15 h of coculture at 37 degrees C. Lysis was verified by electron microscopic analysis. Islet cell lysis was dependent on the T:E ratio and was comparable with P815 and L929 tumor cells used as targets. The cytotoxic activity was localized in the adherent fraction of Corynebacterium parvum activated peritoneal cells and was destroyed by incubation of cells with macrophage-toxic silica particles. Syngeneic thyrocytes and hepatocytes were found to be resistant to the cytolytic action of activated macrophages. It has been shown previously that macrophages contribute to pancreatic islet inflammation. The present in vitro analysis demonstrates that macrophages can function as effector cells in islet destruction.  相似文献   

20.
Chemically-induced sarcomas (BC5), established subcutaneously and growing progressively in BN rats, were completely eliminated by i.v. infusion of syngeneic effector cells. The effector cells were generated from BN spleen cells immune to BC5 in a mixed lymphocyte-tumor cell culture (MLTC). Generation of a high yield of effector cells that were efficacious in eliminating BC5 in vivo necessitated: depletion of macrophages from immune spleen populations, before preparation of MLTC; addition back to MLTC of a small number of macrophages from normal spleens to attain a level of 0.5% of the spleen cells in culture; and addition of T cell growth factor on day 5 of MLTC. With these conditions a subset of T cells was expanded. They were blast cells with surface markers W3/25 and Ia, which exhibited no cytotoxic activity in vitro, and probably functioned as a helper or amplifier element in the tumor-bearing host. Effector cells generated in MLTC with BC5, treated with mitomycin C, were specific for BC5 in vivo and did not affect growth of a viral-induced BN tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号