首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cytochemical Localization of Certain Phosphatases in Escherichia coli   总被引:19,自引:12,他引:7       下载免费PDF全文
Cytochemical studies of Escherichia coli at the light and electron microscopic levels have revealed alkaline phosphatase, hexose monophosphatase, and cyclic phosphodiesterase reaction products in the periplasmic space and at the cell surface. In preparations for both light and electron microscopy, reaction product filled polar caplike enlargements of the periplasmic space, such as those described in plasmolyzed cells, indicating significant terminal concentrations of these enzymes; dense substance was often seen within these polar caps in morphological specimens. Staining of the bacterial surface was commonly encountered, but could represent artifactual accumulation of precipitate along the cell wall. Alkaline phosphatase was demonstrated with several substrates (ethanolamine phosphate, glycerophosphate, p-nitrophenylphosphate, and glucose-6-phosphate) over a wide pH range in a bacterial strain (C-90) known to be constitutive for this enzyme, whereas strains deficient in this enzyme (U-7, repressed K-37), showed no activity with these substrates. Hexose monophosphatase and cyclic phosphodiesterase activities were characterized by reaction-product deposition with specific substrates at acid or neutral, but not at alkaline, pH in strains of E. coli lacking alkaline phosphatase (U-7 and repressed K-37). Fixation in Formalin or the use of calcium as a capture reagent seemed to interfere with periplasmic staining in cells prepared for electron microscopy. Formalin fixation had little effect on biochemical assays of the phosphatase activity of intact cells in suspension, but partially reduced the activity evident in sonically treated extracts or in suspensions of dispersed cryostat sections. Glutaraldehyde treatment impaired enzyme activity more drastically.  相似文献   

2.
Pseudomonas aeruginosa (ATCC 9027) releases four periplasm-located enzymes, i.e., ribonuclease (EC 3.1.4.22; EC 3.1.4.23), alkaline phosphatase (EC 3.1.3.1), cyclic-2', 3'-phosphodiesterase (EC 3.1.4.d), and 5'-nucleotidase (EC 3.1.3.5) into the medium during growth. Ribonuclease and alkaline phosphatase are classed as enzymes which are readily extracted by osmotic shock and spheroplast formation whereas cyclic-2',3'-phosphodiesterase and 5'-nucleotidase are classed as enzymes which are not readily extracted by these procedures. In view of the relative ease of extraction of the former enzymes it is suggested that the lattter enzymes, cyclic-2',3'-phosphodiesterase and 5'-nucleotidase, are bound and located in the periplasm in a manner different to ribonuclease and alkaline phosphatase.  相似文献   

3.
A survey of Salmonella typhimurium enzymes possessing phosphatase or phosphodiesterase activity was made using several different growth conditions. These studies revealed the presence of three major enzymes, all of which were subsequently purified: a cyclic 2' ,3'-nucleotide phosphodiesterase (EC 3.1.4.d), an acid hexose phosphatase (EC 3.1.3.2), and a nonspecific acid phosphatase (EC 3.1.3.2). A fourth enzyme hydrolyzed bis-(p-nitrophenyl)phosphate but none of the other substrates tested. No evidence was found for the existence of an alkaline phosphatase (EC 3.1.3.1) or a specific 5'-nucleotidase (EC 3.1.3.5) in S. typhimurium LT2. All three phosphatases could be measured efficiently in intact cells, which suggested a periplasmic location; however, they were not readily released by osmotic shock procedures. The nonspecific acid phosphatase, which was purified to apparent homogeneity, yielded a single polypeptide band on both sodium dodecyl sulfate and acidic urea gel electrophoretic systems.  相似文献   

4.
Mutants of Escherichia coli have been selected for the absence of 5'-nucleotidase (uridine diphosphate-sugar hydrolase) and 3'-nucleotidase (2',3'-cyclic phophodiesterase). Mutants selected for the absence of 5'-nucleotidase are of two kinds: those that lack detectable activity for the enzyme (Ush(-)), and those that possess activity when cell extracts are assayed, but not when intact cells are assayed (cryptic; Crp(-)). The latter class is probably identical to a type of mutant previously reported by Ward and Glaser. When mutants are selected for the absence of 3'-nucleotidase, Crp(-)mutants are also obtained. Thus far, however, mutants totally lacking this enzyme have not been found. The location on the genetic map of one ush mutation is at position 11 min and that of one crp mutation at approximately 67 min. In the crp mutant, 5'-nucleotidase and 3'-nucleotidase remain located in the periplasm. This mutant is also cryptic for alkaline phosphatase but not for acid hexose phosphatase. Treatment of cells with ethylenediamine-tetraacetate substantially alleviated crypticity. These data are discussed in terms of the organization of periplasmic enzymes and of the outer membrane as a permeability barrier.  相似文献   

5.
Bovine intestinal 5'-nucleotidase has been partially purified and characterized for comparison with two other phosphohydrolases from the same tissue, alkaline phosphatase and 5'-nucleotide phosphodiesterase, which are closely related structurally and mechanistically. Kinetic studies with a variety of nucleotides and phosphonate analogs show that, although 5'-nucleotidase is a monoesterase like alkaline phosphatase, it more closely resembles 5'-nucleotide phosphodiesterase in its high affinity and specificity for nucleotide binding. 5'-Nucleotidase is bound very strongly by an affinity column containing a bound phosphonate analog of ADP but is not bound by an affinity column containing a non nucleotide phosphonate which selectively binds alkaline phosphatase. 5'-Nucleotidase is strongly bound by immobilized antibodies prepared against 5'-nucleotide phosphodiesterase, and is less strongly bound by immobilized antibodies prepared against alkaline phosphatase. We conclude that 5'-nucleotidase is structurally more similar to 5'-nucleotide phosphodiesterase than to another monoesterase, alkaline phosphatase.  相似文献   

6.
All members of the Enterobacteriaceae possess distinct 5'-nucleotidases and cyclic phosphodiesterases (3'-nucleotidases) that can be differentiated from the acid and alkaline phosphatases and the acid sugar hydrolases. The nucleotidases and cyclic phosphodiesterases of the various Enterobacteriaceae are remarkably similar in properties. All of the 5'-nucleotidases hydrolyze 5'-nucleotides, adenosine triphosphate, and uridine diphosphoglucose. Their pH optimum is from 5.7 to 6.1. The cyclic phosphodiesterases hydrolyze 3'-nucleotides, cyclic phosphonucleotides, bis-(p-nitrophenyl)phosphate, and p-nitrophenylphosphate. Their pH optimum is from 7.2 to 7.8. For both enzymes, cobalt showed optimal metal stimulation. An intracellular protein inhibitor for the 5'-nucleotidase is present in all of the Enterobacteriaceae. No inhibitor of cyclic phosphodiesterase activity exists, although hydrolysis of both cyclic phosphonucleotides and 3'-nucleotides is inhibited by ribonucleic acid. Neither of the enzymes is subject to control by phosphate level or by catabolite repression. Of the other bacteria studied, only Haemophilus and Bacillus subtilis contained significant 3'- or 5'-nucleotidase activity.  相似文献   

7.
The conjugated trihydroxy bile salts glycocholate and taurocholate removed approx. 20--30% of the plasma-membrane enzymes 5'-nucleotidase, alkaline phosphatase and alkaline phosphodiesterase I from isolated hepatocytes before the onset of lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase. The conjugated dihydroxy bile salt glycodeoxycholate similarly removed 10--20% of the 5'-nucleotidase and alkaline phosphatase activities, but not alkaline phosphodiesterase activity; this bile salt caused lysis of hepatocytes at approx. 10-fold lower concentrations (1.5--2.0mM) than either glycocholate or taurocholate (12--16mM). At low concentrations (7 mM), glycocholate released these enzymes in a predominantly particulate form, whereas at higher concentrations (15 mM) glycocholate further released these components in a predominantly 'soluble' form. Inclusion of 1% (w/v) bovine serum albumin in the incubations had a small protective effect on the release of enzymes from hepatocytes by glycodeoxycholate, but not by glycocholate. These observations are discussed in relation to the possible role of bile salts in the origin of some biliary proteins.  相似文献   

8.
The regulation of three Salmonella typhimurium phosphatases in reponse to different nutritional limitations has been studied. Two enzymes, an acid hexose phosphatase (EC 3.1.3.2) and a cyclic phosphodiesterase (EC 3.1.4.d), appear to be regulated by the cyclic adenosine 3' ,5'-monophosphate (AMP) catabolite repression system. Levels of these enzymes increased in cells grown on poor carbon sources but not in cells grown on poor nitrogen or phosphorus sources. Mutants lacking adenyl cyclase did not produce elevated levels of these enzymes in response to carbon limitation unless cyclic AMP was supplied. Mutants lacking the cyclic AMP receptor protein did not produce elevated levels of these enzymes in response to carbon limitation regardless of the presence of cyclic AMP. Since no specific induction of either enzyme could be demonstrated, these enzymes appear to be controlled solely by the cyclic AMP system. Nonspecific acid phsphatase activity (EC 3.1.3.2) increased in response to carbon, nitrogen, phosphorus, or sulfur limitation. The extent of the increase depended on growth rate, with slower growth rates favoring greater increases, and on the type of limitation. Limitation for either carbon or phosphorus resulted in maximum increases, whereas severe limitation of Mg2+ caused only a slight increase. The increase in nonspecific acid phosphatase during carbon limitation was apparently not mediated by the catabolite repression system since mutants lacking adenyl cyclase or the cyclic AMP receptor protein still produced elevated levels of this enzyme during carbon starvation. Nor did the increase during phosphorus limitation appear to be mediated by the alkaline phosphatase regulatory system. A strain of Salmonella bearing a chromosomal mutation, which caused constitutive production of alkaline phosphatase (introduced by an episome from Escherichia coli), did not have constitutive levels of nonspecific acid phosphatase.  相似文献   

9.
The activities of subcellular marker enzymes in bile and liver homogenate from several mammalian species have provided information on the specificity of protein release during bile formation. The presence of significant amounts of the plasma membrane enzymes alkaline phosphodiesterase I and leucyl-beta-naphthylamidase in bile, in addition to alkaline phosphatase and 5'-nucleotidase, and the relative absence of intracellular enzymes lends support to the view that bile salt liberation from the hepatocyte is accompanied by a partial solubilization of the plasma (canalicular) membrane without extensive damage to the whole hepatocyte.  相似文献   

10.
Alkaline phosphatase and 5'-nucleotidase are covalently linked to phosphatidylinositol in bovine fat globule membrane, as demonstrated by their release following treatment with phospholipase C specific for phosphatidylinositol. The failure of this treatment to liberate phosphodiesterase I may indicate that it has a variant linkage resistant to release. In a test of exposure at the membrane surface, alkaline phosphatase and phosphodiesterase I, but not 5'-nucleotidase, were released from fat globule membrane by treatment with proteinase K. These apparent differences in accessibilities of membrane surface proteins suggest that attachment to phosphatidylinositol does not necessarily impart greater exposure to proteins with which it is linked.  相似文献   

11.
The intracellular localization of adenylate cyclase and 3',5'-cyclic nucleotide phosphodiesterase in buffalo sperm was examined. Adenylate cyclase activity is distributed in heads (8.4%), midpieces (16.6%), tails (49.5%) and 5.7% in the soluble supernatant; the total recovery being 81%. A 4-fold increase in specific activity was observed in the tail fraction relative to sonicated suspension. Further fractionation of the tail fraction into plasma membrane and microtubules by dialysis against low ionic strength buffer was followed by marker enzymes (Mg2+ -ATPase, 5'-nucleotidase and alkaline phosphatase) as well as by examination of fractions under electron microscope. The recovered adenylate cyclase (79%) was found in microtubules (45%) and plasma membrane (34%). Cyclic nucleotide phosphodiesterase in tails was distributed in tail plasma membrane (13.7%), microtubules (31.5%) and cytosol (34%) with a total recovery of 80%. Similar results were obtained when the distribution of adenylate cyclase and cyclic nucleotide phosphodiesterase was studied by treatment with Triton X-100; 40% activity of adenylate cyclase present in tails (about 20% relative to sperm sonicate) appeared in the soluble form by this method. The results are discussed in relation to control of cyclic AMP levels in buffalo sperm by adenylate cyclase and cyclic nucleotide phosphodiesterase.  相似文献   

12.
Escherichia coli Div 124(ts) is a conditional-lethal cell division mutant formed from a cross between a mutant that produces polar anucleated minicells and a temperature-sensitive cell division mutant affected in a stage of cross-wall synthesis. Under permissive growth temperature (30 C), Div 124(ts) grows and produces normal progeny cells and anucleated minicells from its polar ends. When transferred to nonpermissive growth temperature (42 C), growth and macromolecular synthesis continue, but cell division and minicell formation are inhibited. Growth at 42 C results in formation of filamentous cells showing some constrictions along the length of the filaments. Return of the filaments from 42 to 30 C results in cell division and minicell formation in association with the constrictions and other areas along the length of the filaments. This gives rise to a "necklace-type" array of cells and minicells. Recovery of cell division is observed after a lag and is followed by a burst in cell division and finally by a return to the normal growth characteristic of 30 C cultures. Recovery of cell division takes place in the presence of chloramphenicol or nalidixic acid when these are added at the time of shift from 42 to 30 C, and indicates that a division potential for filament fragmentation is accumulated while the cells are at 42 C. This division potential is used for the production of both minicells and cells of normal length. The conditional-lethal temperature sensitive mutation controls a step(s) in cross-wall synthesis common to cell division and minicell formation.  相似文献   

13.
Release of surface enzymes in Enterobacteriaceae by osmotic shock   总被引:37,自引:12,他引:25       下载免费PDF全文
The process of osmotic shock, which has been used to release degradative enzymes from Escherichia coli, can be applied successfully to other members of the Enterobacteriaceae. Cyclic phosphodiesterase (3'-nucleotidase), 5'-nucleotidase (diphosphate sugar hydrolase), acid hexose phosphatase, and acid phenyl phosphatase are released from Shigella, Enterobacter, Citrobacter, and Serratia strains. Some strains of Salmonella also release these enzymes. Members of Proteus and Providencia groups fail to release enzymes when subjected to osmotic shock and do not show a lag in regrowth, although they do release their acid-soluble nucleotide pools. In contrast to E. coli, release of enzymes from other members of the Enterobacteriaceae studied is affected by growth conditions and strain of organism. None of the organisms was as stable to osmotic shock in exponential phase of growth as was E. coli. Exponential-phase cells of Shigella, Enterobacter, and Citrobacter could be shocked only with 0.5 mm MgCl(2) to prevent irreparable damage to the cells. These observations suggest that this group of degradative enzymes is probably loosely bound to the cytoplasmic membrane through the mediation of divalent cations.  相似文献   

14.
When isolated hepatocytes are incubated with phosphatidylinositol-specific phospholipase C, three cell-surface enzymes show markedly different behaviour. Most of the alkaline phosphatase is released at very low values of phosphatidylinositol hydrolysis, whereas further phosphatidylinositol hydrolysis releases only a maximum of about one-third of the 5'-nucleotidase. Alkaline phosphodiesterase I is not released. If cells containing phosphatidyl[3H]inositol are similarly treated, then the released [3H]inositol is in the form of inositol phosphate: no evidence has been obtained for any covalent association between released [3H]inositol and alkaline phosphatase.  相似文献   

15.
Plasma membranes were isolated from the yeast and mycelial forms of Candida albicans as described previously (Marriott, 1975) and examined for the presence of several enzymes. Measurement of specific activities showed enrichment of Mg2+-dependent and Ma+/K+-stimulated Mg2+-dependent adenosine triphosphatase and mannan synthetase, in the plasma membrane fractions from both morphological forms of the organism. However, acid and alkaline phosphatase, NADH oxidase and 5'-nucleotidase showed no such specific location.  相似文献   

16.
Cellular Location of Degradative Enzymes in Staphylococcus aureus   总被引:4,自引:1,他引:3       下载免费PDF全文
Staphylococus aureus, ATCC 6538P, was fractionated into protoplast membranes, mesosomal vesicles, periplasm, and cytoplasm. These fractions and the culture fluid were then assayed for various degradative enzyme activities. They were not restricted to a single fraction nor dispersed homogeneously, but were distributed predominantly (on the basis of specific activity) as follows: nuclease in the culture fluid; alkaline phosphatase, 5'-nucleotidase, and acid phosphatase in the periplasm; adenosine triphosphatase in the protoplast membrane; and protease (low levels) in mesosomal vesicles. No significant esterase nor cell wall hydrolytic activity was found in any fraction. S. aureus 80/81 was studied for penicillinase activity after induction with benzyl penicillin; this enzyme was localized in the mesosomal vesicles. Electron microscopy did not reveal any ultrastructural changes associated with secretion of the extracellular fraction. Overall, these studies demonstrate that degradative enzymes are located in several surface compartments and that, therefore, the mesosome does not function as a prototype lysosome in S. aureus.  相似文献   

17.
Large amounts (66-97%) of marker enzymes such as alkaline phosphatase, 5'-nucleotidase, phosphodiesterase I, and gamma-glutamyl transpeptidase of bovine milk fat globule membrane (MFGM) were selectively solubilized by nonionic detergents such as Triton X-100, Tween 20, Nonidet P-40, Liponox NCK, and Emulgen 109-P. On the other hand, the extractability of MFGM protein with these detergents was less than 50%. Judging from the recovery of total activity, it is likely that alkaline phosphatase, phosphodiesterase I, and gamma-glutamyl transpeptidase are activated by nonionic detergents, whereas 5'-nucleotidase is somewhat inhibited by the detergents, except for Tween 20, and acid phosphatase is strongly inhibited by all detergents. In addition, solubilization of the protein with the nonionic detergents was found to be somewhat selective by SDS-polyacrylamide gel electrophoresis. There was no appreciable difference between the five brands of nonionic detergents used as regards the extractability of protein and the enzymatic activity of the extracted marker enzymes of MFGM, except that the solubilizing ability of Tween 20 was relatively low.  相似文献   

18.
The differentiation of rat liver lysosomal acid phosphatase, acid ATPase, acid phosphodiesterase, acid ribonuclease, and acid deoxyribonuclease was studied by isoelectric focusing. To prevent autolytic digestion, inhibitors of cathepsins and neuraminidase were used. The proportion of acidic forms of acid phosphatase, acid ATPase and acid phosphodiesterase was increased by the use of extraction medium containing 0.05% Triton X-100. To investigate the identity of acid ATPase and acid phosphodiesterase, the relative activities among the multiple forms of these enzymes, the acid phosphodiesterase/acid ATPase ratio at each activity peak, and the degree of enzyme inhibition by p-chloromercuriphenyl sulfonic acid were estimated. The results suggest that acid ATPase is not identical with acid phosphodiesterase. With extraction medium free of Triton X-100, acid ribonuclease appeared in two forms. However, in addition to these forms, a new form of this enzyme with a more acidic pI (4.22) emerged when extraction medium containing 0.05% Triton X-100 was used. The major peak of acid deoxyribonuclease with pI=8.40-9.39 was obtained regardless of the extracting method.  相似文献   

19.
The release of enzymes by osmotic shock from Escherichia coli strain 30E, an unsaturated fatty acid auxotroph, was examined in culture supplemented with either cis- or trans-unsaturated fatty acids. Cultures grown in oleate-supplemented medium release a large fraction of the total cyclic phosphodiesterase, acid hexose phosphatase, and 5'-nucleotidase following osmotic shock. Cultures grown in elaidate-supplemented medium release much less of these same enzymes after shock treatment. Cultures grown with either supplementation show total release of these enzymes upon conversion to spheroplasts, demonstrating that the enzymes are in the periplasmic space in both cases. Cultures grown with either oleate or elaidate as fatty acid source were washed and suspended in medium containing the other isomer. The change from oleate to elaidate resulted in a rapid decrease in ability of the cells to release the three enzymes after osmotic shock so that within a 25% increase in cell mass the culture responded to osmotic shock as would a culture grown overnight in elaidate-supplemented medium. The reverse experiment resulted in a gradual increase in the ability of the cells to respond to osmotic shock. The outer membrane of E. coli is altered by the incorporation of elaidate, as indicated by electron microscopic data.  相似文献   

20.
The activities of 5'-nucleotidase, 2'-nucleotidase, alkaline phosphatase, and acid phosphatase were measured in rat and autopsied human brains. The four phosphatases in the rat brain showed little change in activity after death. The activities of adenosine-producing enzymes were compared in various parts of rat and human brains. When phosphatase activity was measured at pH 7.5, 5'-nucleotidase showed the highest activity in the most parts of the brain. The activity of 2'-nucleotidase and that of nonspecific phosphatase were almost the same at pH 7.5. However, higher phosphatase activity was observed in all parts of the brain when nonspecific phosphatase activity was measured at pH 10.0 or 5.5. High specific activity of 5'-nucleotidase in the brain was detected in the membranous components, especially in the synaptic membranes. The activity of 2'-nucleotidase was distributed in the soluble and synaptosomal fractions. The highest activity of both alkaline and acid phosphatases was recovered in the crude mitochondrial fraction, with the highest specific activity in the microsomal fraction. Phosphatase activity was distributed widely in the rat brain. The activity of 5'-nucleotidase was high in the medulla oblongata, thalamus, and hippocampus, but low in the peripheral nerve, spinal cord, and occipital lobe. The activity of 2'-nucleotidase was high in the vermis and frontal lobe. The highest acid and alkaline phosphatase activities were detected in the frontal lobe and in the olfactory bulb, respectively. The distribution of the four phosphatases in the autopsied human brain was similar to that in the rat brain. The highest 5'-nucleotidase activity was observed in the temporal lobe and thalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号