首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two large ribonucleic acid (RNA) fragments have been obtained from T1-RNase-treated 30S ribosomes of Escherichia coli. One fragment, about 475 nucleotides long, contains all the unique oligonucleotides found by Fellner and associates in sections of 16S RNA designated P, E, E', and K, and one-half the large oligonucleotides of section A. The other large fragment is about 300 nucleotides long and contains the oligonucleotides found in sections C, C', C'. The isolation of these large fragments seems to confirm the arrangement of sections within 16S RNA. There are also recovered from nuclease-treated ribosomes three small fragments, one (120 nucleotides long) from the 5' end, one (26 nucleotides long) from the 3' OH end of the chain, and another section (66 nucleotides long) from the middle of the 16S RNA chain. Small molecular weight material is also generated by nuclease treatment, and about half this material is derived from a region close to the 3' OH end of the 16S RNA chain. This indicates that the most accessible part of the rRNA of E. coli 30S ribosomes is a region 100 to 150 nucleotides long near the 3' end of the chain. A general scheme is proposed to explain the generation of the various-sized RNA products from the rRNA of the 30S ribosome.  相似文献   

2.
To determine the region of 16S ribonucleic acid (RNA) at the interface between 30 and 50S ribosomes of Escherichia coli, 30 and 70S ribosomes were treated with T1 ribonuclease (RNase). The accessibility of 16S RNA in the 5' half of the molecule is the same in 30 and 70S ribosomes. The interaction with 50S ribosomes decreases the sensitivity to T1 RNase of an area in the middle of 16S RNA. A large area near the 3' end of 16S RNA is completely protected in 70S ribosomes. The RNA near the 3' end of the molecule and an area of RNA in the middle of the molecule appear to be at the interface between 30 and 50S ribosomes. One site in 16S RNA, 13 to 15 nucleotides from the 3' end, normally inaccessible to T1 RNase in 30S ribosomes, becomes accessible to T1 RNase in 70S ribosomes. This indicates a conformational change at the 3' end of 16S RNA when 30S ribosomes are associated with 50S ribosomes.  相似文献   

3.
4.
The availabilities of single-stranded 5S rRNA regions c, d and d' for base pairing interactions were analyzed by using synthetic DNA oligomers. Hybrid formation was detected by the endonucleolytical mode of the RNA-DNA specific action of RNase H. Provided that the hybrid interaction involved 6 successive base pairs, 5S rRNA loop c nucleotides 42-47 displayed accessibility in Escherichia coli, Bacillus stearothermophilus and Thermus thermophilus 5S rRNAs as well as in eukaryotic 5S rRNAs from Saccharomyces carlsbergensis, Rattus rattus and Equisetum arvense. Investigating eubacterial 5S rRNA regions d and d' (nucleotides 71-76 and 99-105, respectively), susceptibility was observed in E. coli 5S rRNA which, however, decreases in B. stearothermophilus and even more so in T. thermophilus 5S rRNA. For additional evaluation of the data obtained by RNase H cleavage, association constants of the hexanucleotides were determined by equilibrium dialysis at 4 degrees C for B. stearothermophilus 5S rRNA. The results obtained reveal that nucleotides 36-41 of B. stearothermophilus 5S rRNA are inaccessible for Watson-Crick interaction, which suggests that this part of loop c is in a structurally constrained configuration, or buried in the tertiary structure or involved in tertiary interactions.  相似文献   

5.
6.
7.
E G Niles 《Biochemistry》1977,16(11):2380-2383
Ribonuclease T1 oligonucleotides arising from the 5' and 3' termini of the 17S rRNA of Tetrahymena pyriformis were isolated by the diagonal method of Dahlberg (Dahlberg, J. E. (1968), Nature (London) 220, 548), and their nucleotide sequences were determined. The base sequence of the 3'-terminal fragment is (G)AUCAUUAoh, which is identical to that found in other 17S-18S eucaryotic rRNA species. The nucleotide sequence of the 5'-terminal oligonucleotide is pAACCUGp, which is identical in length to that found in other eucaryotes and shows a partial but significant sequence homology to the 5' RNase TI oligonucleotides isolated from other eucaryotic species.  相似文献   

8.
9.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
A fragment representing the 3'-terminal 'tRNA-like' region of turnip yellow mosaic (TYM) virus RNA has been purified following incubation of intact TYM virus RNA with Escherichia coli 'RNase P'. This fragment, which is 112+3-nucleotides long has been completely digested with T1 RNase and pancreatic RNase and all the oligonucleotides present in such digests have been sequenced using 32P-end labelling techniques in vitro. The TYM virus RNA fragment is free of modified nucleosides and does not contain a G-U-U-C-R sequence. Using nuclease P1 from Penicillium citrinum, the sequence of 26 nucleotides from the 5' end and 16 nucleotides from the 3' end of this fragment has been deduced. The nucleotide sequence at the 5' end of the TYM virus RNA fragment indicates that this fragment includes the end of the TYM virus coat protein gene.  相似文献   

12.
The hybridization of d(GTTCGG) to eubacterial 5S rRNAs, 5S rRNA-protein complexes, 70S ribosomes and 50S and 30S ribosomal subunits was investigated. This oligonucleotide, which may be considered to be an analogue of the T psi CG loop of tRNAs, was chosen in order to investigate a possible interaction between tRNAs with ribosomal components during protein synthesis. The hybridization was analysed by RNase H hydrolysis studies and, in the case of the ribosomes and ribosomal subunits, in addition with the radioactively labelled oligodeoxyribonucleotide in binding studies. The results obtained lead to the conclusion that nucleotides in loop c, i.e. positions 42-47, are available for oligonucleotide interaction in free Escherichia coli and Bacillus stearothermophilus 5S rRNAs and not available in the corresponding 5S rRNA-protein complexes. The 70S ribosomes and ribosomal subunits did not interact with the oligonucleotide. Under the assumption that d(GTTCGG) is an analogue of the T psi CG loop of tRNAs and in view of the results obtained, we conclude that in the unprogrammed ribosomes the T psi CG loop of tRNAs does not interact via standard Watson-Crick base pairs with the ribosomal 5S, 16S or 23S RNAs.  相似文献   

13.
14.
15.
The ribonuclease alpha-sarcin exclusively cleaves the phosphodiester bond after G2661 in the 23S rRNA within 50S subunits, thus inactivating the ribosomes. The resulting alpha-fragment is 243 nucleotides long and contains the 3'-end of the 23S rRNA. The specificity is changed dramatically if isolated 23S rRNA is used as substrate. We have shown previously that 23S rRNA is digested completely except for two fragments, one of which is identical to the alpha-fragment. Here we show that the other fragment comprises the 5'-end of 23S rRNA and contains 385 nucleotides. A similar fragment was obtained when isolated 23S rRNA was digested with RNase A (specific for pyrimidines in single strands). It appears that the 5'-domain (equivalent to 5.8S rRNA of eukaryotic ribosomes) as well as the 3'-domain (equivalent to 4.5S rRNA of chloroplast ribosomes) have a compact and defined tertiary structure in isolated 23S rRNA in contrast to the rRNA region in between. Thus, alpha-sarcin is a convenient tool for detecting compact domains in isolated RNA.  相似文献   

16.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

17.
Kim DF  Green R 《Molecular cell》1999,4(5):859-864
The aminoacyl (A site) tRNA analog 4-thio-dT-p-C-p-puromycin (s4TCPm) photochemically cross-links with high efficiency and specificity to G2553 of 23S rRNA and is peptidyl transferase reactive in its cross-linked state, establishing proximity between the highly conserved 2555 loop in domain V of 23S rRNA and the universally conserved CCA end of tRNA. To test for base-pairing interactions between 23S rRNA and aminoacyl tRNA, site-directed mutations were made at the universally conserved nucleotides U2552 and G2553 of 23S rRNA in both E. coli and B. stearothermophilus ribosomal RNA and incorporated into ribosomes. Mutations at G2553 resulted in dominant growth defects in E. coli and in decreased levels of peptidyl transferase activity in vitro. Genetic analysis in vitro of U2552 and G2553 mutant ribosomes and CCA end mutant tRNA substrates identified a base-pairing interaction between C75 of aminoacyl tRNA and G2553 of 23S rRNA.  相似文献   

18.
A species of low-molecular-weight ribosomal RNA, referred to as '4.5S rRNA', was found in addition to 5S rRNA in the large subunit of chloroplast ribosomes of a wide range of flowering plants. It was shown by sequence analysis that several variants of this RNA may occur in a plant. Furthermore, although in most flowering plants the predominant variant contains about 100 nucleotides, in the broad bean it has less than 80. It seems, therefore, to be much more diverse in size and sequence than the other ribosomal RNA species. Like 5S rRNA , it does not contain modified nucleotides and it is also unusual in having an unphosphorylated 5'-end. It is apparently neither a homologue of cytosol 5.8S rRNA nor a fragment of 23S rRNA.  相似文献   

19.
The polycytidylic acid [poly(C)] tract in foot and mouth disease virus RNA has been located about 400 nucleotides from the 5' end of the RNA by analysis of the products from the digestion of the RNA with RNase H in the presence of oligodeoxyguanylic acid [oligo(dG)]. This treatment produces a small fragment (S) containing the small protein covalently linked to the RNA and a large fragment (L) that migrates faster than untreated RNA on low-percentage polyacrylamide gels, lacks the poly(C) tract as shown by RNase T1 digestion and oligo(dG)-cellulose binding, and is no longer infective. Polyacrylamide gel electrophoresis of fragment S suggests that it is about 400 nucleotides long, in agreement with the size estimated from the proportion of radioactivity in the fragment. Analysis of the RNase T1 digestion products of S shows that it contains only those oligonucleotides mapping close to the poly(C) tract that is situated near the 5' end of the virus RNA.  相似文献   

20.
E. coli 30S ribosomes in the inactive conformation were irradiated at 390 nm in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). This produces monoadducts in which AMT is attached to only one strand of an RNA duplex region. After unbound AMT was removed, some ribosomes were activated and then subjected to 360 nm irradiation; others were reirradiated without activation. Electron microscopic examination of 16S rRNA extracted from these two samples showed covalent rRNA loops indicative of rRNA crosslinks. The general pattern of loops closely matched that seen previously after direct psoralen crosslinking of 30S particles. However, the frequency of occurrence of one major class of loops formed by crosslinks between residues near position 500 and the 3' end was substantially lower for the activated samples, implying that the structure of the 16S rRNA in active and inactive 30S particles is different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号