首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been confirmed by methylation analyses and chemical syntheses that three isomers of branched cyclomaltoheptaose (beta CD) isolated from the mother liquors of a large-scale preparation of beta CD with Bacillus ohbensis cyclomaltodextrin glucanotransferase are 6(1),6(4)-di-O-(alpha-D-glucopyranosyl)-cyclomaltoheptaose (1), 6(1),6(3)-di-O-(alpha-D-glucopyranosyl)-cyclomaltoheptaose (2), and 6-O-(alpha-isomaltosyl)-cyclomaltoheptaose (4) instead of 6(1),6(2)-di-O-(alpha-D-glucopyranosyl)-cyclomaltoheptaose (3), which was erroneously characterized in an earlier paper. Compound 3 has been newly isolated from a glucosyl-beta CD mixture prepared by hydrolysis with glucoamylase of a maltosyl-beta CD mixture, synthesized from maltose and beta CD through the reverse action of pullulanase. Chromatographic behavior and spectral data (13C-n.m.r. and f.a.b.-m.s.) of these isomers of branched beta CD (1-4), as well as those of another isomer prepared by the reverse action of hydrolytic enzymes, 6-O-(alpha-maltosyl)-cyclomaltoheptaose (5), were compared.  相似文献   

2.
The mono-modified beta-cyclodextrin derivative, 6(I)-O-(3-nitrophenyl)cyclomaltoheptaose{mono[6-O-(3-nitrophenyl)]-beta-cyclodextrin} was synthesized, and its crystal structure was determined by single-crystal X-ray analysis. The crystal structure suggests that the 3-nitrophenyl substituent group is inserted into the adjacent beta-cyclodextrin cavity from the secondary hydroxyl side, and the molecules are stacked along the twofold screw axis to form an infinite one-dimensional polymeric chain.  相似文献   

3.
Zhao MG  Hao AY  Li J  Wei YH  Guo P 《Carbohydrate research》2005,340(8):1563-1565
A new soluble cyclomaltoheptaose (cyclodextrin) derivative, 2-O-(2-hydroxybutyl)cyclomaltoheptaose [2-O-(2-hydroxybutyl)-beta-cyclodextrin, 2-HB-beta-CD], was prepared and studied as an efficient chiral selector in the separation of racemic mixtures of drugs by capillary electrophoresis (CE). Results showed that 2-HB-beta-CD could provide higher separating capability than that of beta-CD and the similarly substituted 2-HP-beta-CD.  相似文献   

4.
Crystal structures of heptakis(2,6-di-O-tert-butyldimethylsilyl)cyclomaltoheptaose, heptakis(2-O-methyl-3,6-di-O-tert-butyldimethylsilyl)cyclomaltohep taose and heptakis(2-O-methyl)cyclomaltoheptaose were determined from X-ray diffraction patterns obtained for single crystals of the title compounds grown from ethyl acetate and ethanol, respectively, as solvent. The crystal structures prove conclusively that quantitative migration of the tert-butyldimethylsilyl group from the 2-O- to the 3-O-position [D. Icheln, B. Gehrcke, Y. Piprek, P. Mischnick, W.A. Konig, M.A. Dessoy, A.F. Morel, Carbohydr. Res., 280 (1996) 237-250] was achieved during methylation of heptakis(2,6-di-O-tert-butyldimethylsilyl)cyclomaltoheptaose by iodomethane-sodium hydride.  相似文献   

5.
Shen J  Hao A  Du G  Zhang H  Sun H 《Carbohydrate research》2008,343(15):2517-2522
6-Oligo(lactic acid)cyclomaltoheptaose (6-OLA-βCD) with an average substitution of about 7.0 lactic acid units was prepared as a new water-soluble cyclomaltoheptaose (βCD) derivative (solubility of about 70.7-fold that of βCD), based on the ring-opening polymerization of 3,6-dimethyl-1,4-dioxane-2,5-dione (lactide). The product was characterized by 1H NMR, 13C NMR, IR, and MS spectroscopy. The complexation of amoxicillin with 6-OLA-βCD was found to be much stronger than that with βCD at first, and then 6-OLA-βCD was shown to decompose moderately into βCD and lactic acid. 6-OLA-βCD might be greatly valuable in a controlled release system for Amoxicillin (AMX).  相似文献   

6.
Three positional isomers of 6(I),6(n)-di-O-(beta-L-fucopyranosyl)-cyclomaltoheptaose [6(I),6(n)-di-O-(beta-L-Fuc)-beta-cyclodextrin, -betaCD, n=II-IV] were chemically synthesized using the corresponding authentic compounds, 6(I),6(n)-di-O-(tert-butyldimethylsilyl)-betaCD (n=II-IV), as the fucosyl acceptors, and 2,3,4-tri-O-acetyl-L-fucopyranosyl trichloroacetimidate as the fucosyl donor. Their structures were analyzed by HPLC, MS, and NMR spectroscopy. The hemolytic activities of L-Fuc-betaCDs were lower than that of betaCD, while the solubilities of these branched CDs in water were much higher than that of betaCD. The molecular interaction between these compounds and the fucose-binding lectin Aleuria aurantia lectin (AAL) was investigated using an optical biosensor based on a surface plasmon resonance (SPR) technique. The order of binding affinity, as a function of the fucose-binding position, was 6(I),6(IV)->6(I),6(III)->6(I),6(II)-di-O-(beta-L-Fuc)-betaCD>6-O-(beta-L-Fuc)-betaCD.  相似文献   

7.
A highly anionic cyclomaltooligosaccharide (cyclodextrin, CD) derivative containing sulfopropyl functional groups on the primary face of the CD was synthesized. Heptakis(2,3-di-O-methyl)cyclomaltoheptaose [heptakis(2,3-di-O-methyl)-beta-cyclodextrin] was reacted with 1,3-propane sultone and potassium hydride (KH) in anhydrous tetrahydrofuran in the presence of 18-crown-6 to yield highly substituted potassium heptakis(2,3-di-O-methyl-6-O-sulfopropyl)cyclomaltoheptaose [heptakis(KSPDM)-beta-CD] with an average degree of substitution (DSCE) of 6.9 as determined by inverse detection capillary electrophoresis (CE). The principal species in the product is the fully substituted heptakis(KSPDM)-beta-CD. Complete NMR assignments of the hydrogen and carbon atoms are made using a combination of gCOSY and gHSQC. In the absence of 18-crown-6, the reaction generates a mixture of multiply charged derivatives with average DSCE of 4.1. The possible roles of the crown ether in the reaction are discussed. The ROESY NMR spectrum of the inclusion complex that forms between heptakis(KSPDM)-beta-CD and 2-naphthoic acid in D2O reveals that 2-naphthoic acid inserts with the carboxyl group toward the derivatized primary rim of the cyclodextrin.  相似文献   

8.
The synthesis of the trisaccharide allyl 2-O-(alpha-L-arabinofuranosyl)-6-O-(alpha-D-mannopyranosyl)-beta-D-mannopyra-noside is reported. Stereoselective glycosylation at C-6 of a non-protected allyl beta-mannoside with the acetylated alpha-D-mannosyl bromide gave the alpha-(1 --> 6)-disaccharide as the main product and the crystalline 3,6-branched trisaccharide as minor compound. Further glycosylation of the 2,3 diol (1 --> 6) disaccharide with L-arabinofuranosyl bromide furnished a mixture of 3-O- and 2-O-alpha-L-Ara-trisaccharides from which the title compound was isolated.  相似文献   

9.
1,2,3,2',3',4',6'-Hepta-O-acetyl-beta-lactose (4) was coupled with 2,3,6,2',3',4',6'-hepta-O-acetyl-alpha-lactosyl bromide (7) in the presence of Hg(CN)2 to afford 1,2,3,2',3',4',6'-hepta-O-acetyl-6-O-(2,3,6,2',3',4',6'-hepta-O-acetyl-b eta- lactosyl)-beta-lactose (11) which, upon O-deacetylation, gave 6-O-beta-lactosyl-alpha,beta-lactoses (64% from 4). In contrast, the reaction of 7 with benzyl 2,3,2',3',4',6'-hexa-O-acetyl-beta-lactoside in the presence of Hg(CN)2 produced 3,6,2',3',4',6'-hexa-O-acetyl-1,2-O- (2,3,2',3',4',6'-hexa-O-acetyl-1-O-benzyl-beta-lactos-6-yl orthoacetyl)-alpha-lactose (63%) and 3,6,2',3',4',6'-hexa-O-acetyl-1,2-O-(1- cyanoethylidene)-alpha-lactose (27%). The glycosidation of 4 using 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide in the presence of Hg(CN)2 afforded, after deprotection, 4,6-di-O-beta-D-galactopyranosyl-alpha,beta-D-glucoses (66%). The reaction of 11 with 1,2-di-O-benzyl-(R,S)-glycerols and trimethylsilyl trifluoromethanesulfonate yielded, after deprotection, 1-O-(6-O-beta-lactosyl-beta-lactosyl)-(R,S)-glycerols (18%). Under the same coupling conditions 11 reacted with 2-O-benzylglycerol to form 3-O-acetyl-2-O-benzyl-1-O-[2',3',4',6'-hexa-O-acetyl-6-O-(2,3,6,2',3',4' ,6'- hepta-O-acetyl-beta-lactosyl)-beta-lactosyl]-(R,S)-glycerols (16%).  相似文献   

10.
Heptakis(2,3-di-O-acetyl-6-bromo-6-deoxy)cyclomaltoheptaose has been characterized in aqueous solution by 1D and 2D NMR spectroscopy and in the solid state by X-ray crystallography. In methanol solution, the acetyl groups were found to interact with both inward and outward-pointing protons. This and the strong deshielding of the bridging carbons, relative to the nonacetylated precursor, indicate macrocyclic flexibility. In the crystalline state the macrocycle exists as a methanol complex. It exhibits elliptical distortion, all glucose residues been tilted with their primary side toward the cavity. The existing strain due to the congestion of 14 acetyl groups at the secondary site is relieved by two glucose rings acquiring the rarely observed skew-boat conformation, (0)S(2), by the increased tilting of two glucose residues, as well as by minor variations of the torsion angles of the acetyl groups. The seven bromine atoms are quite accessible to nucleophiles.  相似文献   

11.
The phosphorylation of the branched cyclodextrins, mono-6-O-(alpha-D-glucopyranosyl)cyclomaltohexaose, mono-6-O-(alpha-D-maltosyl)cyclomaltohexaose, mono-6-O-(alpha-D-glucopyranosyl)cyclomaltoheptaose, and mono-6-O-(alpha-D-maltosyl)cyclomaltoheptaose, in aqueous solution by sodium cyclo-mono-mu-imidotriphosphate (cMITP) was examined. In these reactions, only the 2-OH group of a single alpha-D-glucopyranosyl residue of the cyclodextrin ring was phosphorylated, in a maximum yield of 67%. A possible mechanism for the phosphorylation is discussed.  相似文献   

12.
Cyclomaltoheptaose (cycloheptaamylose) has been crystallized with 1-adamantanemethanol as the guest molecule. The complex crystallized in space group C222(1), with unit-cell dimensions a = 19.162 (13), b = 23.965 (17), and c = 32.597 (27) A. The structure was solved by rotation-translation search-methods. The cyclomaltoheptaose exists as a dimer in the crystal by means of extensive hydrogen-bonding across the secondary hydroxyl ends of two cyclomaltoheptaose molecules. The two halves of the dimer are related by a crystallographic two-fold axis. The primary hydroxyl ends of two adjacent cyclomaltoheptaose molecules are also related by a crystallographic two-fold axis, but do not directly hydrogen bond to one another. Instead, they are held in place by a strong hydrogen bond from the hydroxyl group of the 1-adamantanemethanol to a primary hydroxyl group on an adjacent cyclomaltoheptaose molecule. Other stabilizing hydrogen bonds are formed via three water molecules which are situated at the primary hydroxyl interface, and others that form parallel columns stabilizing the crystal structure. A unique feature of this complex is the presence of trapped water in the cavity at the secondary hydroxyl interface. This water is distributed over 3 disordered sites. Its presence blocks one possible site for the 1-adamantanemethanol, which, instead, binds near the primary hydroxyl end, with its hydroxyl group and part of the adamantane moiety protruding from the cyclomaltoheptaose.  相似文献   

13.
The complexation of heptakis(6-deoxy-6-thio)cyclomaltoheptaose to gold nanoparticles prepared by using the Metal Vapour Synthesis (MVS) led to water soluble gold nanoaggregates, thermally stable at 25 °C. The role of gold concentration in the MVS-derived starting solution as well as of the cyclodextrin to gold molar ratio on the size of cyclodextrin-capped gold nanoparticles were investigated. The ability of cyclodextrin bonded to gold nanoparticles to include deoxycytidine was also probed in comparison with that of 1-thio-β-d-glucose sodium salt.  相似文献   

14.
The title compounds were synthesised, and appropriate derivatives were characterised by GLC, GLC-MS, and NMR spectroscopy. The GLC and GLC-MS data proved 2-O-(6-O-L-glycero-alpha-D-manno-heptopyranosyl-alpha-D-glucopyranosyl)- D- glucopyranose to be a constituent of the outer-core region of the lipopolysaccharide from Escherichia coli K-12, indicating the heptosyl residue to be linked to the terminal glucopyranose residue.  相似文献   

15.
The crystal structure of the inclusion complex of cyclomaltoheptaose (beta-cyclodextrin) with hexamethylenetetramine was determined at temperatures of 123, 173, 223, and 293 K. The rigid-body motion of the host and guest molecules was evaluated by means of the TLS method that represents the molecular motion in terms of translation, libration, and screw motion. In increasing the temperature from 123 to 293 K, the amplitude of the rigid body vibration of the host molecule was increased from 1.0 to 1.3 degrees in the rotational motion and from 0.16 to 0.17 A in the translational motion. The cyclomaltoheptaose molecule has the flexibility in seven alpha-(1-->4)-linkages, and each glucose unit was in the rotational vibration around an axis through two glycosidic oxygen atoms. As a result, the rigid-body parameters of cyclomaltoheptaose were considered to be overestimated because of including the contribution from the local motion of glucose units. In contrast, for the guest molecule having no structural flexibility, the TLS analysis demonstrated that the atomic thermal vibration was mostly derived from the rigid body motion. The rotational amplitude of hexamethylenetetramine was changed from 5.2 to 6.6 degrees in increasing the temperature from 123 to 293 K, while the change of the translational amplitude was from 0.20 to 0.23 A. The translational motion of the guest molecule was hindered by the inside wall of the host cavity. The molecular motion was characterized by the rotational vibration around the axis through two nitrogen atoms that were involved in the hydrogen-bond formation.  相似文献   

16.
用酶法合成的10-十一碳烯酸葡萄糖酯进行真菌和细菌的抑菌试验,发现糖酯对白假丝酵母菌及革兰氏阳性菌和阴性菌都有抑制效果,对白假丝酵母菌、大肠杆菌、枯草芽孢杆菌、金黄葡萄球菌、变形杆菌的最低抑菌质量浓度分别为10、4、3、4和3mg/mL。  相似文献   

17.
A pure, single isomer, strong electrolyte chiral resolving agent candidate for capillary electrophoresis, the sodium salt of heptakis(2-O-methyl-3,6-di-O-sulfo)cyclomaltoheptaose has been synthesized on the 100-g scale, in greater than 97% purity, through heptakis(2,6-di-O-tert-butyldimethylsilyl)cyclomaltoheptaose, heptakis(2-O-methyl-3,6-di-O-tert-butyldimethylsilyl)cyclomaltohep taose and heptakis(2-O-methyl)cyclomaltoheptaose intermediates. The structural identity of each intermediate and the final product was conclusively established by high-resolution MALDI-TOF mass spectrometry, variable-temperature 1H and 13C NMR spectroscopy and X-ray crystallography. The purity of each intermediate and the final product was determined by gradient high-performance liquid chromatography (HPLC) and indirect UV detection capillary electrophoresis.  相似文献   

18.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

19.
The isolation of 6-hydroxyluteolin-7-O-(1"-alpha-rhamnoside) from the Central American epiphyte Vriesea sanguinolenta Cogn. and Marchal (Bromeliaceae) is described here. Its stereostructure was established by spectroscopic methods and an X-ray structure analysis of its hepta-O-acetyl derivative. This flavonoid glycoside had previously been reported from some Teucrium species (Labiatae), yet without sufficient physical data and spectroscopic evidence.  相似文献   

20.
Ternatins are blue anthocyanins found in the petals of Clitoria ternata (butterfly pea). Among them, ternatin C5 (delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3',5'-di-O-beta-glucoside; 2) has the structure common to all the ternatins, which is characterized by its glucosylation pattern: a 3,3',5'-triglucosylated anthocyanidin. In the course of studying biosynthetic pathways of ternatins, the key enzymatic activities to produce ternatin C5 were discovered in a crude enzyme preparation from the petals of a blue petal line of C. ternatea. When this preparation was tested for activity against several delphinidin glycosides, delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3'-O-beta-glucoside (6), a postulated intermediate, was found in the reaction mixture, together with three known anthocyanins, which were spectroscopically structurally identified. As a result of structural identification, the following enzymatic activities were identified: UDP-glucose :delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3'-O-beta-glucoside 5'-O-glucosyltransferase (5'GT), UDP-glucose :delphinidin 3-O-(6'-O-malonyl)-beta-glucoside 3'-O-glucosyltransferase (3'GT), UDP-glucose :delphinidin 3-O-glucosyltransferase, and malonyl-CoA :delphinidin 3-O-beta-glucoside 6'-malonyltransferase. In a mauve petal line, which did not accumulate ternatins but delphinidin 3-O-(6'-O-malonyl)-beta-glucoside in its petal, there were neither 5'GT nor 3'GT activities. Thus, the early biosynthetic pathway of ternatins may be characterized by the stepwise transfer of two glucose residues to 3'- and 5'-position of delphinidin 3-O-(6'-O-malonyl)-beta-glucoside (1; Scheme) from UDP-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号