首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this study was to test whether a superposition model of smooth-pursuit and vestibulo-ocular reflex (VOR) eye movements could account for the stability of gaze that subjects show as they view a stationary target, during head rotations at frequencies that correspond to natural movements. Horizontal smooth-pursuit and the VOR were tested using sinusoidal stimuli with frequencies in the range 1.0–3.5 Hz. During head rotation, subjects viewed a stationary target either directly or through an optical device that required eye movements to be approximately twice the amplitude of head movements in order to maintain foveal vision of the target. The gain of compensatory eye movements during viewing through the optical device was generally greater than during direct viewing or during attempted fixation of the remembered target location in darkness. This suggests that visual factors influence the response, even at high frequencies of head rotation. During viewing through the optical device, the gain of compensatory eye movements declined as a function of the frequency of head rotation (P < 0.001) but, at any particular frequency, there was no correlation with peak head velocity (P > 0.23), peak head acceleration (P > 0.22) or retinal slip speed (P > 0.22). The optimal values of parameters of smooth-pursuit and VOR components of a simple superposition model were estimated in the frequency domain, using the measured responses during head rotation, as each subject viewed the stationary target through the optical device. We then compared the model's prediction of smooth-pursuit gain and phase, at each frequency, with values obtained experimentally. Each subject's pursuit showed lower gain and greater phase lag than the model predicted. Smooth-pursuit performance did not improve significantly if the moving target was a 10 deg × 10 deg Amsler grid, or if sinusoidal oscillation of the target was superimposed on ramp motion. Further, subjects were still able to modulate the gain of compensatory eye movements during pseudo-random head perturbations, making improved predictor performance during visual-vestibular interactions unlikely. We conclude that the increase in gain of eye movements that compensate for head rotations when subjects view, rather than imagine, a stationary target cannot be adequately explained by superposition of VOR and smooth-pursuit signals. Instead, vision may affect VOR performance by determining the context of the behavior. Received: 16 June 1997 / Accepted: 5 December 1997  相似文献   

2.
We have shown recently in alert monkeys that repeated interaction between the pursuit and vestibular systems in the orthogonal plane induces adaptive changes in the VOR. To examine further properties of adaptive cross axis VOR induced by pursuit training, sinusoidal whole body rotation was applied either in the pitch or yaw plane while presenting a target spot that moved orthogonally to the rotation plane with either 90 degrees phase-lead or 90 degrees phase-lag to the chair signal. After one hour of training at 0.5 Hz (+/- 10 degrees), considerable phase-shift was observed in orthogonal eye movement responses consistent with the training paradigms by identical chair rotation in complete darkness, with further lead at lower frequencies and lag at higher frequencies. However, gains (eye/chair) induced by phase- shift pursuit training was different during pitch and yaw rotation. Although frequency tuning was maintained during pitch in the phase-shift paradigms, it was not maintained during yaw, resulting in higher gains at lower stimulus frequencies compared to the gains during yaw. This difference may reflect otolith contribution during pitch rotation. To understand further the nature of signals that induce adaptive cross axis VOR, we examined interaction of pursuit, whole field-visual pattern and vestibular stimuli. Magnitudes of the cross axis VOR with a spot alone on one hand and with a spot and pattern moving together in the same plane on the other during chair rotation were similar, and when one of the two visual stimuli was stationary during chair rotation, our well trained monkeys did not induce the cross axis VOR. These results suggest that the cross axis VOR induced by pursuit training shares common mechanisms with the cross axis VOR induced by whole field-slip stimuli and that if conflicting information is given between the two visual stimuli, adaptive changes are inhibited. Horizontal GVPs were recorded in the cerebellar floccular lobe during pitch rotation coupled with horizontal pursuit stimuli. These GVPs did not respond to pitch in the dark before training, but responded after 60 min of pursuit training with eye velocity sensitivities similar to those before training. Adaptive change in the VOR was specific to smooth eye movements but not to saccades in our paradigms.  相似文献   

3.

Background

The mouse is the most commonly used animal model in biomedical research because of recent advances in molecular genetic techniques. Studies related to eye movement in mice are common in fields such as ophthalmology relating to vision, neuro-otology relating to the vestibulo-ocular reflex (VOR), neurology relating to the cerebellum’s role in movement, and psychology relating to attention. Recording eye movements in mice, however, is technically difficult.

Methods

We developed a new algorithm for analyzing the three-dimensional (3D) rotation vector of eye movement in mice using high-speed video-oculography (VOG). The algorithm made it possible to analyze the gain and phase of VOR using the eye’s angular velocity around the axis of eye rotation.

Results

When mice were rotated at 0.5 Hz and 2.5 Hz around the earth’s vertical axis with their heads in a 30° nose-down position, the vertical components of their left eye movements were in phase with the horizontal components. The VOR gain was 0.42 at 0.5 Hz and 0.74 at 2.5 Hz, and the phase lead of the eye movement against the turntable was 16.1° at 0.5 Hz and 4.88° at 2.5 Hz.

Conclusions

To the best of our knowledge, this is the first report of this algorithm being used to calculate a 3D rotation vector of eye movement in mice using high-speed VOG. We developed a technique for analyzing the 3D rotation vector of eye movements in mice with a high-speed infrared CCD camera. We concluded that the technique is suitable for analyzing eye movements in mice. We also include a C++ source code that can calculate the 3D rotation vectors of the eye position from two-dimensional coordinates of the pupil and the iris freckle in the image to this article.  相似文献   

4.
VOR gain modulation was systematically investigated in the Rhesus monkey (M. mulatta) during centric and variable eccentric (up to 50 cm) sinusoidal rotation (4 Hz, 0.75 degree) with the nose facing in- or outward to test convergence of otolith and semicircular canal afferences. Earth-stationary lit LED-targets were placed at different distances (12-180 cm) from the monkey. Results were compared to biological demands. During centric rotation at 4 Hz when smooth pursuit mechanisms do not play a role, VOR gain--as expected--was approximately 1 without dependence on target distance. Phase of VOR and centrifuge were shifted by about 180 degrees as was predicted. If the monkey was rotated eccentrically with the nose facing outward the expected gain enhancement for close targets was obtained. Maximal experimental VOR gain during 4 Hz rotation was 4.4 which was close to demand at 50 cm eccentricity and 15 cm target distance (predicted gain: 4.6). If the nose points inward three situations have to be distinguished from simulation: (1) target behind the axis of rotation--VOR gain decrement should occur; (2) target on the axis of rotation--"inverse VOR suppression"; (3) target between monkey and axis of rotation--phase reversal. Experimentally, VOR gain decrement was obtained (situation 1). VOR gain was minimal (but not zero) for targets around the axis of rotation (situation 2). Situation 3 has not been investigated in detail so far.  相似文献   

5.
Through the process of habituation, continued exposure to low-frequency (0.01 Hz) rotation in the dark produced suppression of the low-frequency response of the vestibulo-ocular reflex (VOR) in goldfish. The response did not decay gradually, as might be expected from an error-driven learning process, but displayed several nonlinear and nonstationary features. They included asymmetrical response suppression, magnitude-dependent suppression for lower- but not higher-magnitude head rotations, and abrupt-onset suppressions suggestive of a switching mechanism. Microinjection of lidocaine into the vestibulocerebellum of habituated goldfish resulted in a temporary dishabituation. This suggests that the vestibulocerebellum mediates habituation, presumably through Purkinje cell inhibition of vestibular nuclei neurons. The habituated VOR data were simulated with a feed-forward, nonlinear neural network model of the VOR in which only Purkinje cell inhibition of vestibular nuclei neurons was varied. The model suggests that Purkinje cell inhibition may switch in to introduce nonstationarities, and cause asymmetry and magnitude-dependency in the VOR to emerge from the essential nonlinearity of vestibular nuclei neurons.  相似文献   

6.

Background and Aims

Opioids are indispensable for pain treatment but may cause serious nausea and vomiting. The mechanism leading to these complications is not clear. We investigated whether an opioid effect on the vestibular system resulting in corrupt head motion sensation is causative and, consequently, whether head-rest prevents nausea.

Methods

Thirty-six healthy men (26.6±4.3 years) received an opioid remifentanil infusion (45 min, 0.15 μg/kg/min). Outcome measures were the vestibulo-ocular reflex (VOR) gain determined by video-head-impulse-testing, and nausea. The first experiment (n = 10) assessed outcome measures at rest and after a series of five 1-Hz forward and backward head-trunk movements during one-time remifentanil administration. The second experiment (n = 10) determined outcome measures on two days in a controlled crossover design: (1) without movement and (2) with a series of five 1-Hz forward and backward head-trunk bends 30 min after remifentanil start. Nausea was psychophysically quantified (scale from 0 to 10). The third controlled crossover experiment (n = 16) assessed nausea (1) without movement and (2) with head movement; isolated head movements consisting of the three axes of rotation (pitch, roll, yaw) were imposed 20 times at a frequency of 1 Hz in a random, unpredictable order of each of the three axes. All movements were applied manually, passively with amplitudes of about ± 45 degrees.

Results

The VOR gain decreased during remifentanil administration (p<0.001), averaging 0.92±0.05 (mean±standard deviation) before, 0.60±0.12 with, and 0.91±0.05 after infusion. The average half-life of VOR recovery was 5.3±2.4 min. 32/36 subjects had no nausea at rest (nausea scale 0.00/0.00 median/interquartile range). Head-trunk and isolated head movement triggered nausea in 64% (p<0.01) with no difference between head-trunk and isolated head movements (nausea scale 4.00/7.25 and 1.00/4.5, respectively).

Conclusions

Remifentanil reversibly decreases VOR gain at a half-life reflecting the drug’s pharmacokinetics. We suggest that the decrease in VOR gain leads to a perceptual mismatch of multisensory input with the applied head movement, which results in nausea, and that, consequently, vigorous head movements should be avoided to prevent opioid-induced nausea.  相似文献   

7.
In isolated snail brain, the role was studied of cyclic adenosine monophosphate (cAMP) in providing plastic properties of electro-excitable neuronal membranes of two types, habituating and non-habituating to rhythmic intracellular stimulation with depolarizing electric pulses. It has been shown that at high level of cAMP in the cell maintained with administration of dibutyryl-cAMP and (or) blockaders of phosphodiesterase in incubation medium, habituating cells lose their ability of habituation to stimulation. There is also no habituation in the presence of serotonin: serotonin effect is removed by imidazol, activator of phosphodiesterase. Imidazol promotes the development of habituation of cells, initially non-habituating to stimulation. Data are obtained on connection of Ca2+ effects and cAMP metabolism in habituating cells. On the basis of the obtained data it is suggested that the cyclase system controls plastic properties of neurones of both types, and reduction of cAMP content in the cell apparently mediates the above mentioned Ca-K-mechanism of habituation.  相似文献   

8.
Recording of ocular nystagmus during vestibular tests does not measure the true response of the vestibulo-ocular reflex (VOR), because the VOR response (so-called slow phase of nystagmus) is interrupted by resetting saccades (so-called fast phase of nystagmus). In order to extract the real VOR contribution, saccades must be removed. In most of the nystagmus processing algorithms, saccade removal requires a human operator to choose a suitable eye velocity threshold able to separate fast from slow nystagmus phases. In the present report a fully automatic removal system is presented which selects an optimal velocity threshold by computing the VOR frequency response and maximizing its coherence function.  相似文献   

9.
The vestibulo-ocular reflex (VOR) produces compensatory eye movements by utilizing head rotational velocity signals from the semicircular canals to control contractions of the extraocular muscles. In mammals, the time course of horizontal VOR is longer than that of the canal signals driving it, revealing the presence of a central integrator known as velocity storage. Although the neurons mediating VOR have been described neurophysiologically, their properties, and the mechanism of velocity storage itself, remain unexplained. Recent models of integration in VOR are based on systems of linear elements, interconnected in arbitrary ways. The present study extends this work by modeling horizontal VOR as a learning network composed of nonlinear model neurons. Network architectures are based on the VOR arc (canal afferents, vestibular nucleus (VN) neurons and extraocular motoneurons) and have both forward and lateral connections. The networks learn to produce velocity storage integration by forming lateral (commissural) inhibitory feedback loops between VN neurons. These loops overlap and interact in a complex way, forming both fast and slow VN pathways. The networks exhibit some of the nonlinear properties of the actual VOR, such as dependency of decay rate and phase lag upon input magnitude, and skewing of the response to higher magnitude sinusoidal inputs. Model VN neurons resemble their real counterparts. Both have increased time constant and gain, and decreased spontaneous rate as compared to canal afferents. Also, both model and real VN neurons exhibit rectification and skew. The results suggest that lateral inhibitory interactions produce velocity storage and also determine the properties of neurons mediating VOR. The neural network models demonstrate how commissural inhibition may be organized along the VOR pathway.  相似文献   

10.
The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases characterized by progressive instability of posture and gait, incoordination, ocular motor dysfunction, and dysarthria due to degeneration of cerebellar and brainstem neurons. Among the more than 20 genetically distinct subtypes, SCA8 is one of several wherein clinical observations indicate that cerebellar dysfunction is primary, and there is little evidence for other CNS involvement. The aim of the present work was to study the decay of the horizontal vestibulo-ocular reflex (VOR) after a short period of constant acceleration to understand the pathophysiology of the VOR due to cerebellar Purkinje cell degeneration in SCA8. The VOR was recorded in patients with genetically defined SCA8 during rotation in the dark. Moderate to severely affected patients had a qualitatively intact VOR, but there were quantitative differences in the gain and dynamics compared to normal controls. During angular velocity ramp rotations, there was a reversal in the direction of the VOR that was more pronounced in SCA8 compared to controls. Modeling studies indicate that there are significant changes in the velocity storage network, including abnormal feedback of an eye position signal into the network that contributes to this reversal. These and other results will help to identify features that are diagnostic for SCA subtypes and provide new information about selective vulnerability of neurons controlling vestibular reflexes.  相似文献   

11.
12.
Rabbits were raised in complete darkness from birth to the age of 3 months. At this age, the animals were submitted to dynamic vestibular stimulation consisting of lateral sinusoidal oscillations of different frequencies and fixed amplitude. The vertical VOR, elicited in complete darkness, was then recorded. While the phase of the response was perfectly adequate to ensure head movements compensation, the gain values recorded were clearly reduced with respect to the values obtained in a normally raised control group of the same age. After exposure to light, the visually deprived animals showed a complete recovery of normal VOR gain values in a relatively short period of time. Another group of animals was submitted to monocular prolongation of light deprivation during the fourth month of life. After 2 weeks these rabbits displayed a clear unbalance of the VOR between the two eyes: the eye in which vision was allowed showed a complete recovery of VOR gain values, while the gain of the occluded eye remained unchanged. The present results confirm that visual experience in early life is necessary for a correct development of the VOR. If visual deprivation is limited to the first few months of life, the impairment of the reflex characteristics is completely reversible. Finally, data on monocular deprivation suggest that, in the rabbit, the neural structures which preside to the development of the vertical VOR compensatory properties are lateralized.  相似文献   

13.
The vestibulo-ocular reflex (VOR), which stabilizes the eyes in space during head movements, can undergo adaptive modification to maintain retinal stability in response to natural or experimental challenges. A number of models and neural sites have been proposed to account for this adaptation but these do not fully explain how the nervous system can detect and correct errors in both gain and phase of the VOR. This paper presents a general error correction algorithm based on the multiplicative combination of three signals (retinal slip velocity, head position, head velocity) directly relevant to processing of the VOR. The algorithm is highly specific, requiring the combination of particular sets of signals to achieve compensation. It is robust, with essentially perfect compensation observed for all gain (0.25X–4.0X) and phase (-180°–+180°) errors tested. Output of the model closely resembles behavioral data from both gain and phase adaptation experiments in a variety of species. Imposing physiological constraints (no negative activation levels or changes in the sign of unit weights) does not alter the effectiveness of the algorithm. These results suggest that the mechanisms implemented in our model correspond to those implemented in the brain of the behaving organism. Predictions concerning the nature of the adaptive process are specific enough to permit experimental verification using electrophysiological techniques. In addition, the model provides a strategy for adaptive control of any first order mechanical system.  相似文献   

14.
We describe the behavior of an unhabituated population of chimpanzees in the Goualougo Triangle, Republic of Congo. We encountered chimpanzee parties on 218 occasions during two field seasons (February 1999–December 1999, June 2000–June 2001). Overall contact rate was 0.63 contacts per day in the field (n = 347). During the first 5 min of observation, we recorded individual responses as curious, ignore, hide, or depart. In contrast to other unhabituated chimpanzees, curiosity was the most common response (84%) of individuals in the Goualougo Triangle. However, the responses were deeply integrated in the group's reaction to our arrival and behavior throughout an encounter. Based on the behavior of the majority of individuals in a group, we categorized entire contact events as naïve, ignore, nervous, or depart. Naïve contacts accounted for 69% of all encounters. Other contacts types occurred much less frequently: nervous (12%), depart (11%), ignore (8%). Naïve contacts were characterized by chimpanzees that continued to exhibit curiosity throughout the encounter, the arrival of other individuals at the contact location, and relatively prolonged contact with observers (average duration: 136 min). It is likely that the high frequency of curious responses and naïve contacts are due to the remote location of the Goualougo Triangle and the chimpanzees's lack of experience with humans. Documentation of this naïve phenomenon has been successfully used to lobby for the protection of the chimpanzees and their habitat.  相似文献   

15.
Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.  相似文献   

16.
Effect of the neuropeptide FMRFamide on two types of nerve cells differing in plastic properties: habituating and non-habituating to rhythmic intracellular stimulation, has been studied. FMRFamide causes a slow developing, continuously growing depolarisation and an increase of input resistance of the most part of habituating cells resulting in inhibition of their habituation to intracellular stimulation. No desensitisation of cells to the action of FMRFamide was observed. The data obtained by using Ca-ionophore, imidazole and caffeine show that the effect of the peptide may be caused by inhibition of Ca-dependent K-conductance and depends on cAMP metabolism. FMRFamide exerts a less pronounced action on non-habituating cells and does not change their plastic properties. Inhibition by FMRFamide of the habituation at the level of electroexcitable membrane may play a significant part in regulation of neuronal plasticity.  相似文献   

17.
A three-dimensional model is proposed that accounts for a number of phenomena attributed to the otoliths. It is constructed by extending and modifying a model of vestibular velocity storage. It is proposed that the otolith information about the orientation of the head to gravity changes the time constant of vestibular responses by modulating the gain of the velocity storage feedback loop. It is further proposed that the otolith signals, such as those that generate L-nystagmus (linear acceleration induced nystagmus), are partially coupled to the vestibular system via the velocity storage integrator. The combination of these two hypotheses suggests that a vestibular neural mechanism exists that performs correlation in the mathematical sense which is multiplication followed by integration. The multiplication is performed by the otolith modulation of the velocity storage feedback loop gain and the integration is performed by the velocity storage mechanism itself. Correlation allows calculation of the degree to which two signals are related and in this context provides a simple method of determining head angular velocity from the components of linear acceleration induced by off-vertical axis rotation. Correlation accounts for the otolith supplementation of the VOR and the sustained nystagmus generated by off-vertical axis rotation. The model also predicts the cross-coupling of horizontal and vertical optokinetic afternystagmus that occurs in head-lateral positions and the reported effects of tilt on vestibular responses.  相似文献   

18.
Purpose: The CD44 v7/8 splice variant that is frequently expressed in cervical carcinoma and rarely expressed in normal tissues displays promising properties as a target antigen for cancer immune therapy. In this study, cytotoxic T lymphocytes (CTLs) were genetically engineered to gain CD44v7/8 target specificity. Methods: Clone 96 (CI96), an established murine cytotoxic T-cell line, and naïve murine T cells were retrovirally transduced with a fusion gene construct encoding for the single chain fragment scFv of the monoclonal antibody VFF17 and for the chain of the T-cell receptor (TCR). The therapeutic potential of genetically engineered T cells was tested in vitro and in vivo. Results: Surface expression of the chimeric TCR on infected Cl96 and naïve T cells was shown by FACS analysis. CD44v7/8-positive target cells were efficiently lysed by transduced Cl96 and naïve T cells, demonstrating the functionality and specificity of the chimeric TCR. In a xenograft BALB/c mouse model, efficient growth retardation of CD44v7/8-positive tumours was mediated by genetically engineered Cl96(VFF17)cyYZ cells. Conclusions: We were able to reprogramme the target specificity of recombinant Cl96 and naïve CTLs resulting in efficient cytolysis of CD44v7/8-positive cervical cancer cells. High transduction rates and the specific cytolysis of CD44v7/8-redirected CTLs are promising tools for an immune gene therapy approach for advanced cervical cancer.Abbreviations Ab Antibody - CTL Cytolytic T lymphocyte - mAb Monoclonal antibody - TCR T-cell receptor  相似文献   

19.
A control systems model of the vestibulo-ocular reflex (VOR) originally derived for yaw rotation about an eccentric axis (Crane et al. 1997) was applied to data collected during ambulation and dynamic posturography. The model incorporates a linear summation of an otolith response due to head translation scaled by target distance, adding to a semi-circular canal response that depends only on angular head rotation. The results of the model were compared with human experimental data by supplying head angular velocity as determined by magnetic search coil recording as the input for the canal branch of the model and supplying linear acceleration as determined by flux gate magnetometer measurements of otolith position. The model was fit to data by determining otolith weighting that enabled the model to best fit the data. We fit to the model experimental data from normal subjects who were: standing quietly, walking, running, or making active sinusoidal head movements. We also fit data obtained during dynamic posturography tasks of: standing on a platform sliding in a horizontal plane at 0.2 Hz, standing directly on a platform tilting at 0.1 Hz, and standing on the tilting platform buffered by a 5-cm thick foam rubber cushion. Each task was done with the subject attending a target approximately 500, 100, or 50 cm distant, both in light and darkness. The model accurately predicted the observed VOR response during each test. Greater otolith weighting was required for near targets for nearly all activities, consistent with weights for the otolith component found in previous studies employing imposed rotations. The only exceptions were for vertical axis motion during standing, sliding, and tilting when the platform was buffered with foam rubber. In the horizontal axis, the model always fit near target data better with a higher otolith component. Otolith weights were similar with the target visible and in darkness. The model predicts eye movement during both passive whole-body rotation and free head movement in space implying that the VOR is controlled by a similar mechanism during both situations. Factors such as vision, proprioception, and efference copy that are available during head free motion but not during whole-body rotation are probably not important to gaze stabilization during ambulation and postural stabilizing movement. The linearity of the canal-otolith interaction was tested by re-analysis of the whole body rotation data on which the model is based (Crane et al. 1997). Normalized otolith-mediated gain enhancement was determined for each axis of rotation. This analysis uncovered minor non-linearities in the canal-otolith interaction at frequencies above 1.6 Hz and when the axis of rotation was posterior to the head. Received: 11 March 1998 / Received in revised form: 1 March 1999  相似文献   

20.
The transfer characteristics of the vestibuloocular reflex (VOR), and of the semicircular canal primary afferents (SCPAs) that drive it, have been studied in several species. In monkeys and cats, the dominant time constant describing horizontal VOR dynamics ( hu ) is longer than that ( c ) of horizontal SCPAs. This lengthening of the time constant has been attributed to a velocity storage mechanism that has been modeled as a positive feedback loop in the VOR pathways. We have studied the transfer characteristics of horizontal and vertical VOR and SCPAs in unanesthetized pigeons. In this species the dominant time constants of both the horizontal and vertical VOR ( hv and vv ) are shorter than c . This finding indicates that time constants characterizing the lower frequency response of the VOR can be lengthened or shortened depending on the species. We propose that in the pigeon the velocity leakage mechanism can be modeled by substituting negative feedback for positive feedback in the model of the VOR pathways. Negative feedback can also account for the further shortening of hu and vv as VOR gain increases with arousal. Additionally, making the negative feedback loop nonlinear can model the dependency of lower frequency VOR phase on amplitude, and skew in VOR waveforms. Pigeon VOR and SCPA dynamics also differ in their adaptive properties and higher frequency behavior. A predominance of input from highly adaptive SCPAs is proposed to account for the increased adaptation of the vertical VOR as compared with SCPAs overall. A pure time-delay associated with VOR operation can explain the phase lag of the VOR relative to SCPAs at higher frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号