首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements were made of changes in stomatal pore widths inepidermal strips of leaves ofVicia faba and Commelina communis.Strips were incubated in dilute KCI solutions (1 and 10 molm–3) flowing through a perfusion chamber on the stageof a microscope and kept for 4 d in continuous light. Circadianrhythms of stomatal apertures were detected in both species.Although the amplitude was small it was statistically significant.It is concluded that at least partof the mechanism for the stomatalrhythm resides in the epidermis, probably in the guard cells. Key words: Cireadian rhythm, epidermal strips, stomata  相似文献   

2.
Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba   总被引:6,自引:4,他引:2       下载免费PDF全文
Circadian rhythms in stomatal aperture and in stomatal conductance have been observed previously. Here we investigate circadian rhythms in apertures that persist in functionally isolated guard cells in epidermal peels of Vicia faba, and we compare these rhythms with rhythms in stomatal conductance in attached leaves. Functionally isolated guard cells kept in constant light display a rhythmic change in aperture superimposed on a continuous opening trend. The rhythm free-runs with a period of about 22 hours and is temperature compensated between 20 and 30°C. Functionally isolated guard cell pairs are therefore capable of sustaining a true circadian rhythm without interaction with mesophyll cells. Stomatal conductance in whole leaves displays a more robust rhythm, also temperature-compensated, and with a period similar to that observed for the rhythm in stomatal aperture in epidermal peels. When analyzed individually, some stomata in epidermal peels showed a robust rhythm for several days while others showed little rhythmicity or damped out rapidly. Rhythmic periods may vary between individual stomata, and this may lead to desynchronization within the population.  相似文献   

3.
Fischer RA 《Plant physiology》1968,43(12):1947-1952
This paper reports a consistent and large opening response to light + CO2-free air in living stomata of isolated epidermal strips of Vicia faba. The response was compared to that of non-isolated stomata in leaf discs floating on water; stomatal apertures, guard cell solute potentials and starch contents were similar in the 2 situations. To obtain such stomatal behavior, it was necessary to float epidermal strips on dilute KCl solutions. This suggests that solute uptake is necessary for stomatal opening.

The demonstration of normal stomatal behavior in isolated epidermal strips provides a very useful system in which to investigate the mechanism of stomatal opening. It was possible to show independent responses in stomatal aperture to light and to CO2-free air.

  相似文献   

4.
Illuminated leaf discs of Vicia faba were brought into equilibrium with a series of mannitol solutions. The width of stomatal aperture and the osmotic potential of guard cells and epidermal cells were determined. It was found that the maximal aperture was obtained when epidermal cells were at about incipient plasmolysis and that any increase in their turgor pressure brought about a decrease in stomatal aperture. These findings emphasize the importance of epidermal cells in determining the width of the stomatal pore.  相似文献   

5.
The hourly stomatal apertures on epidermal strips of Antirrhinum majus, Rheum rhaponticum, Vicia faba, and Zebrina pendula fixed by Lloyd's technique were compared with the number of stomata found to contain streaming at the same time. With all four species there was an indication of an endogenously controlled rhythm in stomatal opening with both increases and decreases in aperture and streaming during daytime hours in either the light or dark. A similar endogenously activated rhythm was also found at night in Rheum and Vicia. Some relationships exist between changes in stomatal aperture and streaming. Streaming in guard cells may only be a byproduct of metabolism, but as such, it serves the useful purpose as a mixer of chemical activity.  相似文献   

6.
The effect of various K+ levels in combination with Cl− or iminodiacetate (IDA& minus;) on stomatal responsesin isolated epidermal strips of Vicia faba L. were examinedin order to determine the role of malate during guard cell movements.Responses of guard cells to ABA, kinetin, and varying CO2 levelswere similar when epidermal strips were floated on KCL or KIDAat 10 mM; such responses were typical in that ABA caused closure,kinetin stimulated opening in ambient air, and apertures weregreater in CO2-free than ambient air. Maximal stomatal openingwas observed in both ambient and CO2-free air with KCL at 100mM. The transfer of epidermal strips from 100 mM KCL to solutionsof 100 mM KCL supplemented with ABA or kinetin did not bringabout changes in stomatal aperture. KCL at 100 mM supporteda greater degree of stomatal opening than did 100 mM KIDA irrespectiveof the CO2 content of the air. In CO2-free air transfer of epidermalstrips from 100 mM KIDA to solutions containing 100 mM KIDAsupplemented with ABA or kinetin caused little change in stomatalaperture, whereas, in ambient air, the same treatments resultedin stomatal opening. The results are discussed in relation tothe role of malate during guard cell movements.  相似文献   

7.
The effects of abscisic acid (ABA) on the size of the apertureof stomata on epidermal strips of Vicia faba were studied inincubation media with different pH values. The osmotic potentialof guard cells, as determined by the limiting plasmolysis method,was higher at pH 4.0 than at pH 6.0, although the size of thestomatal apertures was almost identical at both pH values. AtpH 4.0, ABA effectively caused stomatal closure but had onlya small effect on the osmotic potential, whereas, at pH 6.0,ABA significantly increased the osmotic potential. ABA promotedthe efflux of Cl and malate from epidermal strips intothe incubation medium, an effect which was more marked at pH6.0, with a concomitant efflux of K+ to balance the charge onthe exported anions. From these results, it is suggested thatABA may cause an increase in the elastic modulus of the cellwalls of guard cells. 3 Present address: Nagano Prefectural Vegetable and OrnamentalCrops Experimental Station, 2206 Oomuro, Matsusiro-machi, Nagano381-12, Japan (Received September 30, 1986; Accepted January 9, 1987)  相似文献   

8.
Leaflets of Vicia faba L. (faba bean) were used to determine whether the mechanical forces resulting from the turgor potentials (Φp) of the larger epidermal cells neighbouring guard cells play a significant role in regulating stomatal aperture. When Φp, of epidermis and Φp of bulk leaflet tissue were compared at midday, Φp of epidermis were only 15–25% those of bulk leaflet tissue at all but the most negative leaflet water potentials (Φ). When plants were bagged to increase Φ by reducing vapour pressure differences between leaflets and air, Φp of bulk leaflet tissue increased to predawn values, but Φp, of epidermis increased to only = 20% of predawn values and stomata opened to their widest apertures. Stomatal apertures were positively correlated with Φp of bulk leaflet tissue but they were not correlated with Φp of epidermis. Reductions in epidermal Φp, began predawn, before stomata were open, and reached minimum values at midday, when stomata were open. We conclude that, in Vicia faba, (1) reduction of Φp of epidermal cells begins predawn, reducing the counterforce to stomatal opening that would exist if full epidermal turgor were maintained throughout the day, and (2) changes in Φp, of leaf epidermal cells do not play a significant role in regulating stomatal aperture.  相似文献   

9.
When stomata of isolated epidermis of Vicia faba are allowed to open in the presence of K+ and iminodiacetate (an impermeant zwitterion), malate is formed in the epidermis; the increases in malate content follow a nearly linear relationship with stomatal aperture. Stomata of leaf sections of V. faba floated on water during opening also exhibit this relationship. When isolated epidermis is offered KCI, this relationship is not observed and less malate is detected at comparable stomatal apertures. The data indicate that Cl, if present at concentrations ≥ 10−5 eq liter−1, can partially satisfy the anion requirement of guard cells of V. faba during stomatal opening. Discrepancies between earlier reports on the relative roles Cl and malate play as counterions for K+ in guard cells of V. faba could now be explained as resulting from variations in the availability of Cl to guard cells.  相似文献   

10.
Osmoregulation in opening stomata of epidermal peels from Vicia faba L. leaves was investigated under a variety of experimental conditions. The K+ content of stomatal guard cells and the starch content of guard cell chloroplasts were examined with cobaltinitrite and iodine-potassium iodide stains, respectively; stomatal apertures were measured microscopically. Red light (50 micromoles per square meter per second) irradiation caused a net increase of 3.1 micrometers in aperture and a decrease of −0.4 megapascals in guard cell osmotic potential over a 5 hour incubation, but histochemical observations showed no increase in guard cell K+ content or starch degradation in guard cell chloroplasts. At 10 micromoles per square meter per second, blue light caused a net 6.8 micrometer increase in aperture over 5 hours and there was a substantial decrease in starch content of chloroplasts but no increase in guard cell K+ content. At 25 micromoles per square meter per second of blue light, apertures increased faster (net gain of 5.7 micrometers after 1 hour) and starch content decreased. About 80% of guard cells had a higher K+ content after 1 hour of incubation but that fraction decreased to 10% after 5 hours. In the absence of KCl in the incubation medium, stomata opened slowly in response to 25 micomoles per square meter per second of blue light, without any K+ gain or starch loss. In dual beam experiments, stomata irradiated with 50 micomoles per square meter per second of red light for 3 hours opened without detectable starch loss or K+ gain; addition of 25 micomoles per square meter per second of blue light caused a further net gain of 4.4 micometers in aperture accompanied by substantial K+ uptake and starch loss. Comparison of K+ content in guard cells of opened stomata in epidermal peels with those induced to open in leaf discs showed a substantially higher K+ content in the intact tissue than in isolated peels. These results are not consistent with K+ (and its counterions) as the universal osmoticum in guard cells of open stomata under all conditions; rather, the data point to sugars arising from photosynthesis and from starch degradation as additional osmotica. Biochemical confirmation of these findings would indicate that osmoregulation during stomatal opening is the result of three key metabolic processes: ion transport, photosynthesis, and sugar metabolism.  相似文献   

11.
Stomatal Responses and the Senescence of Leaves   总被引:1,自引:0,他引:1  
WARDLE  K.; SHORT  K. C. 《Annals of botany》1983,52(3):411-412
Guard cell responses were examined in green and senescing leavesof Victa faba using detached epidermal strips to eliminate influencesfrom the mesophyll. Stomatal opening was greater in epidermalstrips from mature leaves than from senescing leaves althoughthe latter still retained the ability to respond to CO2 andto kinetin. It was concluded that the decline in stomatal activityduring senescence is an independent but parallel process tochanges occurring in the mesophyll. Vicia faba, leaf senescence, stomata, kinetin  相似文献   

12.
Guard cell walls combine exceptional strength and flexibility in order to accommodate the turgor pressure-driven changes in size and shape that underlie the opening and closing of stomatal pores. To investigate the molecular basis of these exceptional qualities, we have used a combination of compositional and functional analyses in three different plant species. We show that comparisons of FTIR spectra from stomatal guard cells and those of other epidermal cells indicate a number of clear differences in cell-wall composition. The most obvious characteristics are that stomatal guard cells are enriched in phenolic esters of pectins. This enrichment is apparent in guard cells from Vicia faba (possessing a type I cell wall) and Commelina communis and Zea mays (having a type II wall). We further show that these common defining elements of guard cell walls have conserved functional roles. As previously reported in C. communis, we show that enzymatic modification of the pectin network in guard cell walls in both V. faba and Z. mays has profound effects on stomatal function. In all three species, incubation of epidermal strips with a combination of pectin methyl esterase and endopolygalacturonase (EPG) caused an increase in stomatal aperture on opening. This effect was not seen when strips were incubated with EPG alone indicating that the methyl-esterified fraction of homogalacturonan is key to this effect. In contrast, arabinanase treatment, and incubation with feruloyl esterase both impeded stomatal opening. It therefore appears that pectins and phenolic esters have a conserved functional role in guard cell walls even in grass species with type II walls, which characteristically are composed of low levels of pectins.  相似文献   

13.
Guard cells emit an alkali-induced, blue fluorescence upon excitationby ultraviolet radiation (emission maximum energy at 365 nm).Fluorescence emission of guard cells was brighter than thatof the neighbouring epidermal cells in a number of wild andcultivated plants including conifers, but the relative fluorescenceintensity and quality was species-dependent. Three representativeplants possessing stomatal complexes which differed morphologicallywere studied: Olea europaea, Vicia faba and Triticum aestivum.Immersing leaves of these plants in chloroform for 30 s (therebyremoving epicuticular waxes) significantly reduced the intensityof the fluorescence emitted by guard cells. This indicates thatguard cell fluorescence could be due to either an increasedconcentration of fluorescing compounds (probably wax-bound phenolics),or a thicker cuticular layer covering the guard cells. Giventhat the alkali-induced blue fluorescence of the guard cellsis a common characteristic of all plants examined, it couldbe used as a rapid and convenient method for in situ measurementsof the number, distribution and size of stomatal complexes.The proposed experimental procedure includes a single coatingof the leaf surface by, or immersion of the whole leaf in, a10% solution of KOH for 2 min, washing with distilled water,and direct observation of the leaf surface under the fluorescencemicroscope. Fluorescence images were suitable for digital imageanalysis and methodology was developed for stomatal countingusing Olea europaea as a model species. Copyright 2001 Annalsof Botany Company Cuticle, epicuticular waxes, fluorescence microscopy, image analysis, phenolics, stomata  相似文献   

14.
The effects of H$ and fusicoccin (FC) on stomatal opening inthe dark were investigated using epidermal strips of Commelinacommunis and Vicia faba cv. Ryosai Issun. Citrate-phosphatebuffer induced maximal opening of stomata at pH 3.0 when testedover the range of 2.7 to 5.0. HCl at 1 mM also induced stomatalopening without appreciable accumulation of K$ in the guardcells. After 4 hr treatment with 10 µM FC, stomata openedwith concomitant accumulation of K$ in the guard cells, although1–2 hr treatment caused opening without concomitant K$increase. These results suggest that stomatal opening can be caused bysalt accumulation and/or changes of the physicochemical conditionsin the cell wall of the guard cells due to high acidity. 1 Present address: Biological Laboratory, Faculty of Education,Nagasaki University, Nagasski 852, Japan. (Received April 30, 1982; Accepted July 17, 1982)  相似文献   

15.
Cell membrane potentials have been measured both in epidermalstrips and intact leaf sections of Tradescantia virginiana andCommelina communis, and in epidermal cells over green and overalbino mesophyll cells of T. albiflora var. albovittata. Membranepotentials (cell) in strips were considerably lower than thosein intact sections and were insensitive to light and to theabsence or presence of calcium. Their response to external cationlevels was indifferent to ionic species. However, in intactleaf sections incubated with calcium present, membrane potentialsresponded to K+ levels but not to Na+. were more negative thancells in epidermal strips, and responded to changes in illumination. Long-term recordings of cell and vacuolar K+ levels in T. virginianaduring stomatal closure suggest that the fluctuations of cellwere unrelated to K+ movement (which we could not detect) andthus probably to stomatal movement as well. Turgor pressures measured in epidermal cells of intact leafsections of T. virginiana were found to be of the same magnitudeas those previously reported for epidermal strips. It is concludedthat epidermal cells maintain their solute contents during strippingwithout the involvement of an electrophysiological transportsystem. With the possible exception of lateral subsidiary cells,there was no evidence suggesting that ordinary epidermal cellsare capable of osmotic adjustment even when additional KCI wassupplied in the osmoticum. Absolute turgor levels in intactleaf sections kept at constant external KCI were unrelated tosteady state cell.  相似文献   

16.
Studies of the water relations of potassium deficient sugarbeet plants (Beta vulgaris L.) revealed two factors for stomatal closure. One component of stomatal closure was reversible by floating leaf discs on distilled water to relieve the water deficit in the leaves; the other component was reversible in the light by floating the leaf discs on KCl solution for 1 hour or more. Potassium-activated stomatal opening in the light was observed when the guard cells were surrounded by their normal environment of epidermal and mesophyll cells, just as observed by previous workers for epidermal strips. Leaf water potentials, like stomatal apertures, appear to be strongly related to leaf potassium concentration. Potassium-deficient plants have a greatly decreased root permeability to water, and the implications of this effect on stomatal aperture and leaf water potential are discussed. In contrast, petiole permeability to water is unaffected by potassium treatment.  相似文献   

17.
The development of stomatal guard cells is known to require cortical microtubules; however, it is not known if microtubules are also required by mature guard cells for stomatal function. To study the role of microtubules in guard cell function, epidermal peels of Vicia faba were subjected to conditions known to open or close stomata in the presence or absence of microtubule inhibitors. To verify the action of the inhibitors, microtubules in appropriately treated epidermal peels were localized by cryofixation followed by freeze substitution and embedding in butyl-methyl methacrylate. Mature guard cells had a radial array of microtubules, focused toward the thick cell wall of the pore, and the appearance of this array was the same for stomata remaining closed in darkness or induced to open by light. Treatment of epidermal peels with 1 mM colchicine for 1 h depolymerized nearly all cortical microtubules. Measurements of stomatal aperture showed that neither 1 mM colchicine nor 20 M taxol affected any of the responses tested: remaining closed in the dark, opening in response to light or fusicoccin, and closing in response to calcium and darkness. We conclude that intact microtubule arrays are not invariably required for guard cell function.  相似文献   

18.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

19.
Abstract. An Ohm's law analogy is frequently employed to calculate parameters of leaf gas exchange. For example, resistance to water vapour loss is calculated as the quotient of vapour pressure difference (VPD) and vapour loss by transpiration. In the present research, this electrical analogy was extended. Steady-state transpiration as a function of VPD, assayed in leaflets of Vicia faba using gas exchange techniques, was compared with steady-state K+ current magnitude as a function of voltage in isolated guard cell protoplasts of Vicia faba, assayed using the patch clamping technique in the whole cell configuration. An electrophysiological model originally developed to explain the kinetics of current changes following step changes in voltage across a cell membrane was used to fit the kinetics of transpiration changes following step changes in VPD applied to leaflets of Vicia faba. Following step increases in VPD, transpiration exhibited an initial increase, reflecting the increased driving force for water loss and, for large step increases in VPD, a transient decrease in stomatal resistance. Transpiration subsequently declined, reflecting stomatal closure. By analogy to electrophysiological responses, it is hypothesized that the humidity parameter that is sensed by guard cells is VPD. Two models based on epidermal water relations were also applied to transpiration kinetics. In the first model, the transient increase in transpiration following a step increase in VPD was attributed partially to an increase in the Physical driving force (VPD) and partially to a transient decrease in stomatal resistance resulting from reduced epidermal backpressure. In the second model, the transient decrease in stomatal resistance was attributed to a direct response of the guard cells to VPD. Both models based on water relations gave good fits of the data, emphasizing the need for further study regarding the metabolic nature of the guard cell response to humidity.  相似文献   

20.
Because the epidermis ofV. faba L. leaves easily can be peeled into strips of one cell layer, we developed a simple method ofin situ hybridization using epidermal peels as a substitute for paraffin, resin and cryosections. Our method sufficiently detected the expression of broad bean aquaporin 1 in guard cells. RT-PCR revealed higher expression of aquaporins (AQPs) in guard cells compared to other leaf cell types; this indicates the importance of AQP for bulk water flow across guard cell membranes and, therefore, for stomatal movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号