首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
A linear relationship in each of the torsion angle pairs, α-β, β-?, ?-ζ, and α-γ, has been found by applying a statistical method based on the concept of circular variates to backbone torsion angle data of helical in yeast tTNAPhe. A series of helical dimer models generated with these relationships have been found to be stereochemically acceptable, and the models also indicate that the backbone unit in the RNA helix is geometrically capable of an oscillatory motion with the distance of about 3.4 Å between adjacent bases. The motion of the backbone unit is analogous to that of a helical spring. The adjacent bases, because of being attached to the backbone, oscillate in a manner similar to the oscillatory dimer model proposed by Davis and Tinoco [Davis, R. C. & Tinoco, I., Jr. (1968) Biopolymers 6 , 223–242]. Here, the oscillation of the backbone unit in the RNA helix is discussed in terms of two geometrical quantities: the torsion (τ) and curvature (κ) of the helix. On these lines, a stereochemical model of RNA strand separation is proposed.  相似文献   

3.
The electric birefringence of poly(L -glutamic acid) (PLGA) in dimethylsulfoxide (DMSO)–methanol mixtures has been measured by use of the rectangular pulse technique. The length distribution curve, the mean molecular length, and the mean apparent permanent dipole moment of PLGA in solution have been obtained from the decaycurve and field strength dependence of the steady-state birefringence according to the method developed for analyzing the electric birefringence of a polydisperse system. The length distribution curve exhibits one or two peaks. The length corresponding to a high peak and the mean length of PLGA undergo an abrupt change in the vicinity of 50 to 60 vol % DMSO at 30°C. Moreover, a sharp change of the Moffitt b0 parameter with the solvent composition is observed. These results provide evidence for the existence of a solvent-induced transition from a helical conformation (presumably α-helix) to another helical conformation with shorter length per amino acid residue. Further, the temperature dependence of the length distribution of PLGA in 50 vol % DMSO suggests the existence of a temperature-induced helix ? helix transition.  相似文献   

4.
Phonon dispersion curves and normal coordinate analysis of -poly-L-alanine   总被引:2,自引:0,他引:2  
The vibrational frequencies of α-helical poly-L -alanine and its N-deuterated analog have been assigned by normal coordinate analyses. The phonon dispersion curves and frequency distribution of α-poly-L -alanine have been calculated by using a model which includes hydrogen bonding. The frequency distribution was used to interpret the inelastic neutron scattering data and to calculate the heat capacity. The low-frequency chain modes involving accordian-like motions of the whole helix have been calculated and their dispersion investigated by means of a simplified model.  相似文献   

5.
The helix-coil transition has been studied by high-resolution NMR for three water-soluble polypeptides. Such systems are better models for protein behavior than those in TFA-CDCl3 solvent. An upfield shift of ~7 cps is observed for the α-CH peak of poly(L -glutamic acid) and poly-L -lysine as the helix content increases over the transition. No such shift is found for copoly(L -glutamic acid42, L -lysine28, L -alanine30). The width of the α-CH peak for poly L-lysine increases rapidly as helix content rises but for poly L -glutamic acid and the copolymer, the width of this peak remains unchanged up to 60% helicity. This demonstrates a rapid rate of interconversion between helical and random conformations in partly helical polymer for the latter two polypeptides. All three polymers however, show no apparent α-CH peak at 100% helicity. Side-chain resonance lines also broaden as helix content increases and, to a greater extent, the closer the proton is to the main chain.  相似文献   

6.
7.
The stepwise synthesis and conformational studies of the N-terminal helical partial sequence of the membrane-modifying polypeptide antibiotic alamethicin are described. The polyoxyethylen esters of the fragments N-t-Boc-L -Pro-Aib-Ala-Gln-Aib-Val-Aib-Gly-OH and N-Ac-Aib-L -Pro-Aib-Ala-Aib-Ala-Gln-Aib-Val-Aib-Gly-OH are synthesized using polyoxyethylene (molecular mass 10,000) as solubilizing support. CD spectra of each intermediate in ethanol show α-helix formation of the N-protected peptide polymers beginning with the nonapeptide and of the N-protonated sequences beginning with the decapeptide. Compared to the helix of alamethicin, temperature- and solvent-dependent CD measurements indicate analogous conformational behavior. The results suggest that in lipophilic media the alamethicin helix can extend the full length of the partial sequence between the two proline residues and that aqueous media favor an increase of random-coil conformation. For model studies of the particular lipid interaction of alamethicin, the stepwise synthesis of peptides with the alternating (Aib-L -Ala)n sequence (n = 1–7) was carried out on a polyoxyethylene support (molecular mass 6000). CD and ORD studies in ethanol showed a change from the random coil to a right-handed α-helix with increasing peptide length. This change is observed for the N-protected peptides at a chain length of 8 residues and for the N-protonated peptides at a length of 9 residues. The comparison of the CD data of free and polyoxyethylene-bound peptides revealed that the solubilizing polymeric support cannot induce conformational changes. The intensities of the CD bands of t-Boc-(Aib-L -Ala)n-OPOE (n ≥ 6) are higher than those of alamethicin, and these model peptides show similar temperature and solvent inducible changes of their helix contents.  相似文献   

8.
Carlos Alemn 《Proteins》1997,29(4):575-582
Computer simulations have been used to design a polypeptide with a 310 helix conformation. The study has been been performed taking advantage of the intrinsic helix forming tendency of α-Aminoisobutyric acid. In order to avoid the formation of the α helix, which is the other common helical conformation adopted by α-Aminoisobutyric acid-based peptides, retropeptide bonds have been included in the sequence. Thus, retropeptides are not able to form the intramolecular hydrogen bonding interactions characteristic of the α helix. The influences of both the peptide length and the solvent have been examined and compared with those of the polypeptide without retropeptide bonds. Proteins 29:575–582,1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
A Wada  T Tanaka  H Kihara 《Biopolymers》1972,11(3):587-605
Dielectric studies have been carried out for the helix–coil transition of poly-β-benzyl-L -aspartate with m-cresol as a solvent. The transition of the solute molecules has been sharply reflected as a characteristic change in the dielectric dispersion curves in changing temperature. Two polarizations, one having a low and the other a high critical frequency, have appeared. According to theoretical considerations of a model of a broken helix, the former is found to come from the orientation. of helical sequences and the latter from the chemical relaxation due to the helix–coil transition. It also seems likely that the unfolded chain may have a polarizability which could not be neglected at the high-temperature side of the transition.  相似文献   

10.
An algorithm has been developed that permits one to find all possible conformations of the sugar-phosphate backbone for any given disposition of DNA base pairs. For each of the conformations thus obtained, the energy of the helix was calculated by the method of atom-atom potentials. Several isolated regions in the space of the bases′ parameters (Arnott's parameters) have been found for energetically favorable helical structures. Two parameters, the distance of a base pair from the helix axis, D, and the windling angle, τ, allow one to subdivide possible conformations into the families of closely related forms. Two regions (ravines) on the (D, τ) map correspond to the know A and B families. In the B family a continuous transition has been obtained in which the double helix undergoes increasing winding, while the base pairs are moving toward the major (nonglycosidic) groove. Interrelationships between the variables, characterizing the spatial structure of the double helix, D, τ, TL and χ, when going along the bottom of the B ravine, were also obtained. Besides the Known A and B families, several new ones were found to be energetically possible. Among these the strongly underwound helices with the negative D values, as well as the forms with the C4-C5 angle in a trans position, should be mentioned. Biological roles of the different double-stranded conformations, in particular, in protein-nuclei acid interaction are discussed.  相似文献   

11.
A rod-like structure is proposed for the murein lipoprotein of Escherichia coli, built of two parallel unbroken α-helices arranged in a coiled coil of the same type as in the muscle protein tropomyosin. The amino acid sequence has the required regular pattern of hydrophobic amino acids at intervals of three and four residues and the secondary structure predicted from the sequence is 80% helical. A space-filling model confirms that the coiled coil model is stereochemically reasonable, and energy calculations for a series of coils with different radii suggest that the best structure is one with the helix axes 8.25 Å apart. Energyrefined atomic co-ordinates have been calculated which show that the hydrophobic side-chains form a series of close-packed unstrained contacts between the two helices along the entire length of the sequence. On the basis of this study the hexagonal membrane pore model and the segmented helix model proposed by others seem unlikely. The coiled coil has a strongly hydrophilic outer surface, suggesting that the protein has a watery environment within the E. coli cell envelope and is not strictly a membrane protein. Probably only the fatty acid portion of the lipoprotein penetrates into the lipid region of the outer membrane, so that the protein may act as a tie or a spacer between the lipid and the murein wall.  相似文献   

12.
Electron micrographs of negatively stained and platinum-shadowed bacteriophage φCbK have been analyzed by optical diffraction and computer Fourier transformation. The results show that the phage tail is a helical “stacked disc” structure with an annular repeat of about 38 Å and with 3-fold rotational symmetry about the helix axis. Phage tails exhibited lateral and rotational flexibility and were found to possess variable helical parameters. The smaller angle of rotation about the helix axis between equivalent asymmetric units on adjacent discs measured from a number of tail images was found to have an average value of 41.5±0.9 °. Cross-sectional views of short tail fragments were obtained after sonication at 0 °C. These views confirmed the 3-fold symmetry of the 38 Å annular unit, which most probably consists of three identical subunits of the major tail protein. Formation of extended tail polymers, both linear and circular, was found to take place spontaneously in vitro after sonication. On the basis of these results, a low-resolution model for the tail helix is presented. The questions of head-tail symmetry mismatch in the phage and of tail length regulation are discussed.  相似文献   

13.
In this work we present the development of the multiple sequence approximation (AGADIRms) and the standard one-sequence approximation (AGADIRIs) within the framework of AGADIR's α-helix formation model. The extensive comparison between these new formulations and the original one [AGADIR; v. Muñoz and L. Serrano (1994),Nat. Struct. Biol., Vol. 1, pp. 399–409] indicates that the standard one-sequence approximation is virtually identical to the multiple sequence approximation, while the previously used residue partition function approximation [Muñoz and Serrano (1994); (1995), J. Mol. Biol., Vol. 245, pp. 275–296] is less precise. The calculations of the average helical content performed with AGADIR are precise for peptides of less than 30 residues and progressively diverge from the multiple sequence formulation for longer peptides. The helicity distribution of heteropolypeptides with less than 50% average helical content is also well described, while those of quasi-homopolymers with high helical content tend to be flattened. These inaccuracies lead to an underestimation of 0.017 kcal/mol for the mean-residue enthalpic contribution in AGADIR, as compared to AGADIRms and AGADIRIs. The other energy contributions to α-helix stability are not affected by the original statistical approximation. We also discuss the particularities of the model for α-helix formation utilized in AGADIR and compare it with the classical Zimm-Bragg and Lifson-Roig theories. Moreover, we develop the mathematical relationships between the basic AGADIR energy contributions and helix nucleation and elongation, which permit the quantitative comparison between formalisms. Remarkably, the comparison between AGADIRms and the Lifson-Roig formalism shows that, despite the differences on treating helix/coil cooperativity, both theories give virtually identical results when an equivalent set of parameters is used. This indicates that the helix/coil transition is a solid theory independent of the particularities of the model for α-helix formation. © 1997 John Wiley & Sons, Inc. Biopoly 41: 495–509, 1997.  相似文献   

14.
In this paper, we present the end-to-end distance of randomly self-paired polymers (RSPPs). We define a randomly self-paired polymer as a linear polymer each of whose monomers has a probability, f(0<f<1), of pairing with any other one monomer. The RSPP model is inspired by numerous observations that the ends of RNAs are in close proximity. We use this model to explain this proximity. The prediction made by the RSPP model is consistent with these observations. Mapping an RNA with a length of 1000 nucleotides and a pairing fraction of 0.6 onto our RSPP model, for example, we predict an expected end-to-end distance of about 14 unpaired bases. We have also found that the expected end-to-end distance of the RSPP scales roughly as the 1/4 power of its total length.  相似文献   

15.
The active sites of many enzymes are very close to the N-terminus of an α-helix. The helix dipole has been postulated to enhance the binding of anions and speed charge relays in catalysis. We present electrostatic potential maps of α-helices of various lengths using a point charge model. We show that the potential field of the helix can be mimicked by two equal and opposite charges, one at each terminus. The magnitude of these equivalent charges reaches its limiting value of ± 0.2 to 0.3 electron at a helix length of approximately 7–10 residues. We also comment on the relative importance of the helix dipole to that of ionized residues in determining the electrostatics of a protein and discuss what consequences this has for enzymology.  相似文献   

16.
Summary The orientation of cortical microtubules in plant cells has been extensively studied, in part because of their influence on the expansion of most plant cell types. Cortical microtubules are often arranged in helical arrays, which are well known to occur with a specific pitch as a function of development or experimental treatment; however, it is not known if the handedness of helical arrays can also be specified. We have studied the handedness of helical arrays by using Vibratome sectioning of maize primary roots and confocal microscopy of Arabidopsis primary roots. In cortical cells of maize roots, the helical array was found to have the same handedness at a given position, not only for the cells of a single root, but also for the cells of more than one hundred roots examined. Quantification of angular distribution of apparent individual microtubules showed that defined regions of the root were composed of cells with highly uniform microtubule orientation. In the region between transverse and longitudinal microtubules (5–10.5 mm from the tip), the array formed a right-handed helix, and basal of cells with longitudinal microtubules (11.5–15 mm from the tip), the array formed a left-handed helix. Similarly, in epidermal cells of Arabidopsis roots right-handed helical arrays were found in the region between transverse and longitudinal microtubules. These results suggest that, in addition to the orientation of microtubules, the handedness of helical microtubule arrays is under cellular control.Abbreviations Cy3 indocarbocyanine - PBS phosphate-buffered saline - PIPES piperazine-N,N-bis-[2-ethanesulfonic acid]  相似文献   

17.
The peptide Boc-Gly-Dpg-Gly-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe has been designed to examine the structural consequences of placing a short segment with a low helix propensity at the amino terminus of a helical heptapeptide module. The Gly-Dpg-Gly segment is a potential connecting element in the synthetic construction of a helix-linker-helix motif. Crystal parameters for the peptide are P21, a = 8.651(3) Å, b = 46.826(13) Å, c = 16.245 Å, β = 90.13(3)*, Z = 4; 2 independent molecules/asymmetric unit. The structure reveals almost identical conformations for the two independent molecules. The backbone is completely helical for residues 2–9, with one 4 → 1 hydrogen bond and six 5 → 1 hydrogen bonds. The α,α-di-n-propylglycine residue adopts a helical conformation. Gly(1) adopts an extended conformation resulting in a nonhelical N-terminus, with the Boc group swinging away from the helix. The lateral association of helices in the b axis direction is unusual in that the helix axes are directed up or down (parallel or antiparallel) by pairs: ↓↓↑↑↓↓, etc. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A configuration partition function, which incorporates concepts embodied in the amphipathic helix hypothesis, has been formulated for a polypeptide in the presence of zwitterionic phospholipid. An enhanced probability is assigned to helix formation in any region of the polypeptide chain where side chains bearing charges of opposite sign will be situated on the same side of the α-helix but displaced from one another by one turn. This situation will arise when residues i ? 4 (or i ? 3) and i bear charges of opposite sign and residue i ? 4 (or i ? 3) through i are in a helical state. Illustrative calculations are performed for polypeptide chains in which the generalized nonionic amino acid residue serving as host has Zimm-Bragg parameters of σ = 10?4, s = 1. These calculations define conditions under which two interacting charged pairs can cooperate in a synergistic helix augmentation even when the two pairs are separated by significantly more than four generalized nonionic amino acid residues. Furthermore, the two interacting charged pairs, as well as the intervening amino acid residues, may become helical as one unit. Significant augmentation in helicity is observed with plausible values for the enhanced probablity assigned to helix formation for an interacting pair. This model predicts correctly that glucagon and secretin, but not vasoactive intestinal peptide, undergo a coil-to-helix trnsition in the presence of zwitterionic phospholipid. This prediction is made with plausible values for the parameter used to express the helicity enhancement. The experimental observation with zwitterionic phospholipids is the direct opposite of that seen for these three peptides in the presence of anionic lipids and detergents. In anionic lipids the amount of induced helicity is in the following order: glucagon < secretin < vasoactive intestinal peptide. Results obtained with these three peptides demonstrate that the nature of the head group of the lipid is important for lipid–protein interaction and that the resulting conformational changes can be rationalized by matrix methods.  相似文献   

19.
The membrane lipid phosphatidylcholine (PC) is crucial for stress adaptation and virulence of the plant pathogen Agrobacterium tumefaciens. The phospholipid N‐methyltransferase PmtA catalyzes three successive methylations of phosphatidylethanolamine to yield PC. Here, we asked how PmtA is recruited to its site of action, the inner leaflet of the membrane. We found that the enzyme attaches to the membrane via electrostatic interactions with anionic lipids, which do not serve as substrate for PmtA. Increasing PC concentrations trigger membrane dissociation suggesting that membrane binding of PmtA is negatively regulated by its end product PC. Two predicted alpha‐helical regions (αA and αF) contribute to membrane binding of PmtA. The N‐terminal helix αA binds anionic lipids in vitro with higher affinity than the central helix αF. The latter undergoes a structural transition from disordered to α‐helical conformation in the presence of anionic lipids. The basic amino acids R8 and K12 and the hydrophobic amino acid F19 are critical for membrane binding by αA as well as for activity of full‐length PmtA. We conclude that a combination of electrostatic and hydrophobic forces is responsible for membrane association of the phospholipid‐modifying enzyme.  相似文献   

20.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号