首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Electroconvulsive shock (ECS) administered once daily for up to 14 days decreases β-adrenergic receptor binding in the cortex and hippocampus in a time-dependent manner. The decrease in binding in the cortex lasts at least 1 week after the last shock. In the striatum, hypothalamus, or cerebellum, 14 days of ECS did not produce significant changes in β-adrenergic receptor binding. The brain regional pattern of β-adrenergic receptor changes suggests that repeated ECS affects β-adrenergic receptors in brain regions that receive a noradrenergic innervation activated by ECS. The effects of ECS on neurotransmitter receptor binding appear to be highly selective. Of five receptors in the cortex and three receptors in the hippocampus measured, only β-adrenergic receptor binding is decreased. Chronic footshock stress does not alter β-adrenergic receptor binding sites in the cortex, indicating that the effects of ECS are not due to stress alone. The effects of ECS on reserpine-induced alterations in β-adrenergic receptor binding sites were also examined. Ten days of ECS following chronic reserpine injections reverses the increased binding of β-adrenergic receptors  相似文献   

2.
The effect of a single systemic injection of reserpine on tyrosine hydroxylase activity in the locus coeruleus, cerebellum, hypothalamus, and hippocampus was examined. Increases in enzyme activity were seen in all four brain areas; the time-course of the changes, however, was different in each case. In the locus coeruleus the maximum change in enzyme activity was seen 3 days after drug administration; in the cerebellum, 7-11 days; in the hypothalamus, 8-11 days; and in the hippocampus, 21 days. Since tyrosine hydroxylase in the cerebellum and hippocampus is present in terminals of neurons whose cell bodies are located in the locus coeruleus, the delayed increase in enzyme activity in cerebellum and hippocampus probably depends upon the slow rate of transport of TH molecules in these neurons.  相似文献   

3.
The role of the entorhinal cortex and the adrenal gland in rat hippocampal lactate formation was assessed during and after a short-lasting immobilization stress and electroconvulsive shock (ECS). Extracellular lactate was measured on-line using microdialysis and enzyme reactions (a technique named lactography); in some rats, unilateral lesions of the entorhinal cortex were made or the bilateral adrenal glands were removed. The stress-evoked increase in hippocampus lactate was not altered either ipsi- or contralateral to an entorhinal cortex lesion. The response to ECS was attenuated only in the hippocampus ipsilateral to the entorhinal cortex lesion. Removal of bilateral adrenal glands caused some delay in the increase in hippocampal lactate after ECS and a major reduction in the stress-evoked lactate response. These results indicate that (1) the entorhinal cortex is activated by ECS, thereby activating hippocampal lactate efflux and presumably metabolism, and (2) the adrenal gland is essential in the response to stress and, to a minor extent, in the ECS-altered hippocampal metabolism.  相似文献   

4.
We have previously demonstrated substantial increases in thyrotropin-releasing hormone (TRH) in specific regions of rat forebrain two days after single or repeated alternate-day electroconvulsive shock (ECS). To determine longer term effects of ECS-induced seizures on forebrain TRH content, we extended the time of the post-ECS observations to 6 and 12 days following 1 (ECS x 1) or 3 (ECS x 3) alternate-day ECS. Previous observations at 2 days post-ECS were confirmed except that hippocampal content of TRH was higher after ECS x 1. In pyriform cortex TRH remained elevated for 6 days after ECS x 1 and 3, and for 12 days after ECS x 3. In hippocampus TRH was elevated for 6 days after ECS x 1 and tended to remain elevated beyond 2 days after ECS x 3. In anterior cortex the increase persisted 6 days after ECS x 1 and 12 days after ECS x 3. These data show that convulsive seizures can induce sustained elevations of TRH beyond 48 h. This finding may be especially important in pyriform cortex and hippocampus where TRH may function as an endogenous anti-epileptic. Our data are also consistent with a possible role for TRH in affective regulation in the hippocampus, amygdala, pyriform and other cortical regions. Moreover, the present results further advance the analogy of the time-course of the TRH changes in rat to the course of the antidepressant response to electroconvulsive treatment in humans.  相似文献   

5.
6.
Rats were submitted to a series of 10 daily electroconvulsive shocks (ECS). A first group of animals was killed 1 day after the last seizure and a second group 30 days later. Tyrosine hydroxylase (TH) activity was measured using an in vitro assay in the nucleus caudatus, anterior cortex, amygdala, substantia nigra, ventral tegmental area, and locus ceruleus. The mRNA corresponding to this enzyme (TH-mRNA) was evaluated using a cDNA probe at the cellular level in the ventral tegmental area, substantia nigra, and locus ceruleus. Met-enkephalin (MET)-immunoreactivity and the mRNA coding for the preproenkephalin (PPE-mRNA) were assayed in striatum and the central nucleus of the amygdala. The day after the last ECS an increase of TH activity was observed in the ventral tegmental area, locus ceruleus, and substantia nigra in parallel with a similar increase in the amygdala and striatum; in the anterior cortex TH activity remained unchanged. TH-mRNA was increased in the locus ceruleus, evidencing the presence in this structure of a genomic activation. The amounts of MET and PPE-mRNA were unaffected in the striatum but increased in the amygdala. Thirty days after the last ECS we observed a decrease of TH activity in the amygdala and of TH-mRNA amount in the ventral tegmental area. In the locus ceruleus TH-mRNA remained higher in treated animals than in controls whereas TH activity returned to control levels. These results demonstrate that a series of ECS induces an initial increase of the activity of mesoamygdaloid catecholaminergic neurons followed by a sustained decrease through alterations of TH gene expression which could mediate the clinical effect of the treatment.  相似文献   

7.
The effect of a single electroconvulsive shock (ECS) (30 min and 24 h after treatment) and repeated ECS (10 once-daily) on the adenosine neuromodulatory system was investigated in rat cerebral cortex, cerebellum, hippocampus, and striatum. The present study examined the adenosine A1 receptor using N6-[3H]cyclohexyladenosine ([3H]CHA), the A2 receptor using 5'-N-[3H]ethylcarboxyamidoadenosine ([ 3H]NECA), adenylate cyclase using [3H]forskolin, and the adenosine uptake site using [3H]nitrobenzylthioinosine ([3H]NBI). At 30 min after a single ECS, the Bmax of the [3H]NBI binding in striatum was increased by 20%, which is in good agreement with the well-known postictal adenosine release. The Bmax of [3H]forskolin binding in striatum and cerebellum was increased by 60 and 20%, respectively. In contrast to earlier reported changes following chemically induced seizures, [3H]CHA binding was not altered postictally. At 24 h after a single ECS, there were no changes for any ligand in any brain region. Following repeated ECS, there was a 20% increase of [3H]CHA binding sites in cerebral cortex, which lasted for at least 14 days after the last ECS. [3H]Forskolin binding in hippocampus and striatum was 20% lowered 24 h after 10 once-daily ECS but had already returned to control levels 48 h after the last treatment. Evidence is provided that the upregulated adenosine A1 receptors are coupled to guanine nucleotide binding proteins and, furthermore, that this upregulation is not paralleled by an increase in adenylate cyclase activity as labeled by [3H]forskolin.  相似文献   

8.
The levels of cyclic AMP in the rat brain were studied in vivo following destruction or stimulation of the noradrenergic pathway originating in the locus coeruleus. After chronic lesion of the locus coeruleus no alterations in cyclic AMP content were found. Electrical stimulation of the locus coeruleus produced an elevation of cyclic AMP in the cerebral cortex of chloral hydrate anaesthetized rats of 30%. Maximal increases were found after 15–60 s stimulation at a frequency of 30–100 Hz. This maximal response was slightly inhibited by phenoxybenzamine, an α-adrenergic blocking agent, and by the β-blocker propranolol. When the α and β blockers were administered together a highly significant decrease in cyclic AMP response was observed. Pretreatment of the rats with reserpinc +α methyl-p-tyrosine prevented the cyclic AMP response. In addition to the effect in the cerebral cortex, cyclic AMP-levels were also enhanced in the hippocampus, in the striatum and in the hypothalamus. These results suggest that the locus coeruleus regulates a small fraction of cerebral cyclic AMP levels, by both α- and β-adrenergic receptors.  相似文献   

9.
To test the hypothesis that all locus coeruleus projections are simultaneously activated when the locus coeruleus cells fire, the norepinephrine metabolite 3-methoxy-4-hydroxyphenethyleneglycol was assayed in four regions of the central nervous system innervated by the locus coeruleus after three treatments designed to increase locus coeruleus firing in rats. Electrical stimulation of the locus coeruleus, intraperitoneal piperoxan treatment, and electric footschock all significantly increased MHPG levels in rat cerebral cortex, cerebellum, hippocampus, and spinal cord. The magnitude of MHPG increase was greater after locus coeruleus stimulation than after footshock or piperoxan. No significant differences between increases in the above brain regions were found within each treatment group.  相似文献   

10.
The effects of DSP-4 on brain NE levels and turnover in rats were investigated in six brain regions: cortex, hippocampus, cerebellum, brainstem, hypothalamus and locus coeruleus. Administration of 50 mg/kg of DSP-4 significantly decreased NE levels in all brain regions; greatest reductions occurred in the cortex (86% decrease) and in the hippocampus (91% decrease). Doses of DSP-4 less than 50 mg/kg did not significantly lower NE levels in other brain regions, except within the cerebellum. Levels of the NE metabolite 3-methoxy, 4-hydroxyphenylethylene glycol sulfate (MHPG-S04) declined in parallel with those of NE, except within the brainstem and the locus coeruleus. NE turnover, expressed as the ratio of the MHPG-S04 concentration to that of NE, was higher in the cortex and hippocampus than other regions in control animals, and NE turnover significantly increased only in these two areas after the administration of 50 mg/kg of DSP-4 (p less than 0.01). There were no significant changes in the levels of dopamine and a significant decrease of serotonin only in the striatum. These results indicate that DSP-4 is a neurotoxin with a strong predilection for noradrenergic neurons, that its effects vary according to brain region and that its administration increases NE turnover in those brain regions showing the greatest depletion of NE.  相似文献   

11.
The aim of the present study was to determine the effect of activation of melatonin receptor sites on the activity of noradrenergic neurons in the C3H/HeN mouse brain. Changes in noradrenergic activity were assessed by measuring norepinephrine (NE) levels in the hypothalamus, frontal cortex, and hippocampus following inhibition of NE synthesis with alpha-methyl-p-tyrosine (alpha-MpT) (300 mg/kg, i.p., 2 h). 6-Chloromelatonin (1-30 mg/kg, i.p.) significantly retarded the alpha-MpT-induced decrease in NE levels in the hypothalamus, but not in hippocampus and frontal cortex. This effect was observed at 30 min and 60 min after 6-chloromelatonin administration and was dose dependent. At noon, when the levels of endogenous melatonin are low, the melatonin receptor antagonist luzindole (30 mg/kg, i.p., 30 min) did not affect the depletion of NE by alpha-MpT; however, it (1-30 mg/kg) completely antagonized the 6-chloromelatonin-induced reduction of NE depletion elicited by alpha-MpT in hypothalamus. These results suggest that activation of melatonin receptor sites in brain of C3H/HeN mouse retarded the depletion of NE elicited by alpha-MpT. At midnight, when the levels of melatonin are high, luzindole (30 mg/kg) significantly accelerated the depletion of NE by alpha-MpT in hypothalamus, but not in frontal cortex or hippocampus, suggesting activation of melatonin receptor sites by endogenous melatonin. We conclude that activation of melatonin receptor sites in C3H/HeN mouse brain by endogenous melatonin inhibits the activity of noradrenergic neurons innervating the hypothalamus.  相似文献   

12.
The selective NK(1) receptor antagonist, GR205,171 (2.5-40.0 mg/kg, i.p.), dose-dependently elevated dialysate levels of noradrenaline (NA), but not serotonin (5-HT), in the frontal cortex of freely moving rats. This action was exerted stereospecifically inasmuch as its less active isomer, GR226,206, was ineffective. In the dorsal hippocampus, GR205,171 (but not GR226,206) also significantly increased dialysate levels of NA, whereas levels of 5-HT were unaffected. Further, in anaesthetized rats, GR205,171 dose-dependently (1.0-4.0 mg/kg, i.v.) increased the firing rate of adrenergic perikarya in the locus coeruleus. In contrast, their activity was not modified by GR226,206. These findings indicate that selective blockade of NK(1) receptors enhances the activity of ascending adrenergic pathways in rats. Adrenergic mechanisms may, thus, be involved in the potential antidepressant and other functional properties of NK(1) receptor antagonists.  相似文献   

13.
Mathé  A. A.  Gruber  S.  Jiménez  P. A.  Theodorsson  E.  Stenfors  C. 《Neurochemical research》1997,22(5):629-636
Rats were pretreated with 0.9% NaCl, or 0.1 or 1.0 mg/kg MK-801, an anticonvulsant and a psychotomimetic drug, and 60 minutes later given ECS or sham ECS. After six sessions the animals were sacrificed and neuropeptide Y (NPY-), neurokinin A (NKA-), and calcitonin gene-related peptide (CGRP-) like immunoreactivity (-LI) measured with radioimmunoassays. ECS increased NPY-LI in frontal cortex, striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex and hippocampus. MK-801 increased CGRP in a dose-response manner in frontal cortex, and NKA-LI in occipital cortex. Although the higher MK-801 dose reduced seizure duration by 50%, the ECS induced NPY-LI increase in striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex was not diminished. In contrast, there was a parallel decrease in seizures and NPY-LI and NKA-LI changes in frontal cortex and hippocampus, respectively. Investigation of neuropeptides in brain may contribute to understanding of the mechanisms of action of antide-pressive and antipsychotic treatments and of psychotomimetic drugs.  相似文献   

14.
Previous studies indicate that the endocannabinoid system is a potential target for the treatment of depression. To further examine this question we assessed the effects of electroconvulsive shock (ECS) treatment, both a single session and 10 daily sessions, on endocannabinoid content, CB(1) receptor binding parameters and CB(1) receptor-mediated [(35)S]GTPgammaS binding in the prefrontal cortex, hippocampus, hypothalamus and amygdala. A single ECS session resulted in a general reduction in the binding affinity of the CB(1) receptor in all brain regions examined, as well as reductions in N-arachidonylethanolamine (anandamide) content in the prefrontal cortex and the hippocampus, reduced hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the prefrontal cortex and an increase in the binding site density of the CB(1) receptor in the amygdala. Following 10 ECS sessions, all these effects subsided except for the reductions in anandamide content in the prefrontal cortex, which increased in magnitude, as well as the reductions in FAAH activity in the prefrontal cortex. Additionally, repeated ECS treatment resulted in a significant reduction in the binding site density of the CB(1) receptor in the prefrontal cortex, but did not alter CB(1) receptor-mediated [(35)S]GTPgammaS binding. Repeated ECS treatment also significantly enhanced the sensitivity of CB(1) receptor-mediated [(35)S]GTPgammaS binding in the amygdala. Collectively, these data demonstrate that ECS treatment results in a down-regulation of cortical and an up-regulation of subcortical endocannabinoid activity, illustrating the possibility that the role of the endocannabinoid system in affective illness may be both complex and regionally specific.  相似文献   

15.
This study evaluated the effects of chronic stress and lithium treatments on oxidative stress parameters in hippocampus, hypothalamus, and frontal cortex. Adult male Wistar rats were divided into two groups: control and submitted to chronic variate stress, and subdivided into treated or not with LiCl. After 40 days, rats were killed, and lipoperoxidation, production free radicals, total antioxidant reactivity (TAR) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were evaluated. The results showed that stress increased lipoperoxidation and that lithium decreased free radicals production in hippocampus; both treatments increased TAR. In hypothalamus, lithium increased TAR and no effect was observed in the frontal cortex. Stress increased SOD activity in hippocampus; while lithium increased GPx in hippocampus and SOD in hypothalamus. We concluded that lithium presented antioxidant properties, but is not able to prevent oxidative damage induced by chronic variate stress.  相似文献   

16.
Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxietylike behaviors and alters the expression of corticotrophinreleasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamicpituitary- adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.  相似文献   

17.
The effect of different L-phenylalanine (Phe) concentrations (0.12-12.1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase activities was evaluated in homogenates of suckling rat frontal cortex, hippocampus and hypothalamus. Phe, at high concentrations, reduced AChE activity in frontal cortex and hippocampus by 18%-20%. On the contrary, the enzyme activity was unaltered in the hypothalamus. Na+,K+-ATPase was stimulated by high levels of the amino acid, both in the frontal cortex and the hypothalamus by 60%, whereas it was inhibited in the hippocampus by 40%. Mg2+-ATPase was not influenced by Phe. It is suggested that: a) In the frontal cortex, the improper acetylcholine (ACh) release, due to AChE inhibition by Phe, combined with the stimulation of Na+,K+-ATPase, possibly explain tremor and the hyperkinetic behaviour in patients with classical phenylketonuria (PKU). b) In the hippocampus, inhibition of AChE by Phe could lead to problems in memory, while Na+,K+-ATPase inhibition by Phe may induce metabolic disorders and electrical instability of the synaptosomal membrane. c) In the hypothalamus, the behavioral problems in PKU "off diet" may be related to noradrenaline (NA) levels, which are probably correlated with the modulated Na+,K+-ATPase by Phe.  相似文献   

18.
The effect of DSP4 [N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine], a neurotoxin which selectively lesions noradrenergic projections from the locus coeruleus, on thyrotropin (TSH) secretion was investigated in the rat. DSP4 treatment (60 mg/kg injected i.p. 10 days prior to experimentation) significantly decreased the noradrenaline (NA) content of the hippocampus, frontal cortex and hypothalamus of the rat brain. DSP4 treatment did not affect the clonidine (250 g/kg, i.p.) or TSH-releasing-hormone (TRH 5 g/kg i.v.) induced stimulation or the isoproterenol induced inhibition of TSH secretion in the rat. These results suggest that the noradrenergic projection from the locus coeruleus to the hypothalamus does not play a significant role in the regulation of TSH secretion. Furthermore, the noradrenergic deficiency did not give rise to the development of the abnormal TSH response to TRH administration which is frequently observed in depression.  相似文献   

19.
In rabbits, generalized seizures were induced by methoxypyridoxine, and changes in amino acid concentrations of 15 brain regions were investigated before seizure onset and during the course of sustained epileptiform activity. As previously reported, gamma-aminobutyric acid (GABA) concentration decreased preictally in most regions. At the same time, taurine level was elevated in the hypothalamus, thalamus, hippocampus, caudatum, and frontal cortex. After 90 min of seizures, it was significantly decreased in the hypothalamus, periaqueductal grey, substantia nigra, frontal cortex, and cerebellum. Glycine content was reduced preictally only in the substantia nigra; after seizure onset its concentration rose in all brain areas. Glutamate content in the frontal cortex decreased before seizure onset; after 1.5 h of seizures, its concentration in cerebellum, caudatum, and hippocampus was reduced. Aspartate level was decreased in most areas after sustained seizures; in putamen, however, it was elevated. In contrast, glutamine content increased preictally in the superior colliculus and in all brain areas by approximately 200% after 90 min of seizures. Alanine and valine content also rose markedly in most brain areas after prolonged seizures, and threonine showed the same tendency. The single brain regions were observed to respond to methoxypyridoxine in highly individualistic ways. For example, the glycine content of the substantia nigra, which is believed to utilize this amino acid as a neurotransmitter, decreased preictally. The potential importance of the superior colliculus in seizure induction is considered in view of the early rise in glutamine level. The antagonistic preictal behavior of taurine and GABA is discussed with respect to synthesis, uptake from the blood, and antiepileptic properties.  相似文献   

20.
Corticotropin-releasing hormone (CRH) has been found in both hypothalamic and extrahypothalamic sites of the brain and also in the adrenal medulla. To study the timing and location of delayed glucocorticoid action in rats, we measured the effects of 2-day and 7-day cortisol treatment on immunoreactive CRH concentrations in hypothalamus, cerebral cortex, hippocampus, cerebellum, and adrenal gland. The activity of the hypothalamo-pituitary-adrenal (HPA) axis and the sympathoadrenal system were also measured. Studies were carried out both in the afternoon and/or in the morning, to get information about possible circadian changes. CRH contents were not changed in any brain areas studied, except there was a trend of decrease in the hypothalamus compared to vehicle in the afternoon due to the lack of circadian increase after 7-day cortisol treatment. Pituitary ACTH content decreased significantly after 7-day treatment, while beta-endorphin did not. Plasma levels of ACTH, corticosterone, norepinephrine and epinephrine and adrenal ACTH and beta-endorphin contents decreased after 2-day, adrenal CRH content after 7-day treatment with cortisol. Our findings suggest, that chronic cortisol treatment inhibits the circadian activation of the HPA axis at all levels but has variable effects on baseline measures because it causes different changes in release and synthesis at different sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号