首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cpkA gene encoding a second (α) subunit of archaeal chaperonin from Pyrococcus kodakaraensis KOD1 was cloned, sequenced, and expressed in Escherichia coli. Recombinant CpkA was studied for chaperonin functions in comparison with CpkB (β subunit). The effect on decreasing the insoluble form of proteins was examined by coexpressing CpkA or CpkB with CobQ (cobyric acid synthase from P. kodakaraensis) in E. coli. The results indicate that both CpkA and CpkB effectively decrease the amount of the insoluble form of CobQ. Both CpkA and CpkB possessed the same ATPase activity as other bacterial and eukaryal chaperonins. The ATPase-deficient mutant proteins CpkA-D95K and CpkB-D95K were constructed by changing conserved Asp95 to Lys. Effect of the mutation on the ATPase activity and CobQ solubilization was examined. Neither mutant exhibited ATPase activity in vitro. Nevertheless, they decreased the amount of the insoluble form of CobQ by coexpression as did wild-type CpkA and CpkB. These results implied that both CpkA and CpkB could assist protein folding for nascent protein in E. coli without requiring energy from ATP hydrolysis.  相似文献   

2.
The gene encoding the beta subunit of a molecular chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1 (cpkB) was cloned, sequenced, and expressed in Escherichia coli. The cpkB gene is composed of 1,641 nucleotides, encoding a protein (546 amino acids) with a molecular mass of 59,140 Da. The enhancing effect of CpkB on enzyme stability was examined by using Saccharomyces cerevisiae alcohol dehydrogenase (ADH). Purified recombinant CpkB prevents thermal denaturation and enhances thermostability of ADH. CpkB requires ATP for its chaperonin function at a low CpkB concentration; however, CpkB functions without ATP when present in excess. In vivo chaperonin function for the solubilization of insoluble proteins was also studied by coexpressing CpkB and CobQ (cobryic acid synthase), indicating that CpkB is useful for solubilizing the insoluble proteins in vivo. These results suggest that the beta subunit plays a major role in chaperonin activity and is functional without the alpha subunit.  相似文献   

3.
Thermococcus kodakaraensis KOD1 produces two kinds of chaperonin subunits, CpkA and CpkB. To monitor the expression levels of CpkA and CpkB, anti-CpkA and anti-CpkB antisera were obtained by using synthesized peptides as the haptens. These haptens were prepared based on the carboxyl terminus regions of CpkA and CpkB, which show clear differences in amino acid sequence. Immunoblotting analysis using obtained antisera revealed that the expression levels of CpkA and CpkB changed depending on the cultivation temperature. When cells were grown at 95 degrees C, intracellular amount of CpkA was low, while CpkB was expressed at extremely high level in KOD1. In the case of 70 degrees C cultivation, CpkA existed as the major chaperonin in the cell, whereas CpkB existed as the minor one. Temperature-shift experiments showed that the expression of CpkB was induced by the up-shift and reduced by the down-shift of temperature. In contrast, the expression of CpkA was reduced by the up-shift and induced by the down-shift of temperature. Furthermore, native PAGE and immunoprecipitation experiments revealed that the stoichiometrical ratio of CpkA and CpkB in chaperonin complex changed according to growth temperature.  相似文献   

4.
Thermococcus kodakarensis optimally grows at 85°C and possesses two chaperonins, cold-inducible CpkA and heat-inducible CpkB. Gene disruptants DA1 (ΔcpkA) and DB1 (ΔcpkB) showed decreased cell growth at 60°C and 93°C, respectively. The DB2 mutant (ΔcpkAcpkB ΔcpkB), whose cpkB gene was expressed under the control of the cpkA promoter, did not grow at 60°C, and the DB3 mutant [ΔcpkA(1-524)cpkB(1-524) ΔcpkB], whose CpkA amino acid residues 1 to 524 were replaced with corresponding CpkB residues that maintained the C-terminal region intact, grew at 60°C, implying that the CpkA C-terminal region plays a key role in cell growth at 60°C. To screen for specific CpkA target proteins, comparative pulldown studies with anti-Cpk were performed using cytoplasmic fractions from DA1 cells cultivated at 93°C and DB1 cells cultivated at 60°C. Among the proteins coprecipitated with anti-Cpk, TK0252, encoding indole-3-glycerol-phosphate synthase (TrpC), showed the highest Mascot score. Counter-pulldown experiments were also performed on DA1 and DB1 extracts using anti-TrpC. CpkA coimmunoprecipitated with anti-TrpC while CpkB did not. The results obtained indicate that TrpC is a specific target for CpkA. The effects of Cpks on denatured TrpC were then examined. The refolding of partially denatured TrpC was accelerated by the addition of CpkA but not by adding CpkB. DA1 cells grew optimally in minimal medium only in the presence of tryptophan but hardly grew in the absence of tryptophan at 60°C. It has been suggested that a lesion of functional TrpC is caused by cpkA disruption, resulting in tryptophan auxotrophy.  相似文献   

5.
Chromatium vinosum contains a polypeptide that is functionally and structurally similar to the Escherichia coli chaperonin 10. The protein has been purified to homogeneity by sucrose density gradient centrifugation followed by gel filtration using a Bio-Gel A-1.5 m column. The molecular mass of chaperonin 10, as determined by gel filtration or nondenaturing polyacrylamide gel electrophoresis, is 95 kDa. The oligomer is composed of seven or eight subunits. Comparisons of the overall amino acid composition and N-terminal sequences among chaperonin 10 species from C. vinosum and E. coli reflect a high degree of similarity. A physical association between chaperonins 60 and 10 from C. vinosum, in vitro, is supported by three experimental approaches. First, the proteins form a stable binary complex in sucrose density gradients, gel filtration chromatography, and nondenaturing polyacrylamide gel electrophoresis, solely in the presence of ATP and Mg2+. Second, chaperonin 10 from C. vinosum binds, selectively, to a chaperonin 60-coupled Affi-Gel 10 matrix column. Third, a slight molar excess of chaperonin 10 is able to abolish, almost completely, the ATPase in chaperonin 60. The rate for ATPase activity of chaperonin 60 from C. vinosum is enhanced when supplemented with monovalent cations.  相似文献   

6.
K C Terlesky  F R Tabita 《Biochemistry》1991,30(33):8181-8186
Two heat-shock proteins that show high identity with the Escherichia coli chaperonin 60 (groEL) and chaperonin 10 (groES) chaperonin proteins were purified and characterized from photolithoautotrophically grown Rhodobacter sphaeroides. The proteins were purified by using sucrose density gradient centrifugation and Mono-Q anion-exchange chromatography. In the presence of 1 mM ATP, the chaperonin 10 and chaperonin 60 proteins bound to each other and comigrated as a large complex during sucrose density gradient centrifugation. The native molecular weights of each protein as determined by gel filtration chromatography were 889,200 for chaperonin 60 and 60,000 for chaperonin 10. Chaperonin 60 is comprised of monomers with a molecular weight of 61,000 and chaperonin 10 is comprised of monomers with a molecular weight of 12,700 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chaperonin 60 was 9.3% of the total soluble cell protein during photolithoautotrophic growth which increased to 28.5% following heat-shock treatment. When cells were grown photoheterotrophically or chemoheterotrophically, chaperonin 60 was reduced to 6.7% and 3.5%, respectively, of the total soluble protein. The N-terminal amino acid sequence of each protein was determined; chaperonin 60 of R. sphaeroides showed 72% identity to E. coli chaperonin 60 protein, and R. sphaeroides chaperonin 10 showed 45% identity with E. coli chaperonin 10. R. sphaeroides chaperonin 60 catalyzed ATP hydrolysis with a specific activity of 134 nmol min-1 mg-1 (kcat = 0.13 s-1) and was inhibited by R. sphaeroides chaperonin 10, but not E. coli chaperonin 10. The E. coli chaperonin 60 ATPase activity was inhibited by chaperonin 10 from both R. sphaeroides and E. coli.  相似文献   

7.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

8.
G M Myles  J E Hearst  A Sancar 《Biochemistry》1991,30(16):3824-3834
UvrA is the ATPase subunit of the DNA repair enzyme (A)BC excinuclease. The amino acid sequence of this protein has revealed, in addition to two zinc fingers, three pairs of nucleotide binding motifs each consisting of a Walker A and B sequence. We have conducted site-specific mutagenesis, ATPase kinetic analyses, and nucleotide binding equilibrium measurements to correlate these sequence motifs with activity. Replacement of the invariant Lys by Ala in the putative A sequences indicated that K37 and K646 but not K353 are involved in ATP hydrolysis. In contrast, substitution of the invariant Asp by Asn in the B sequences at positions D238, D513, or D857 had little effect on the in vivo activity of the protein. Nucleotide binding studies revealed a stoichiometry of 0.5 ADP/UvrA monomer while kinetic measurements on wild-type and mutant proteins showed that the active form of UvrA is a dimer with 2 catalytic sites which interact in a positive cooperative manner in the presence of ADP; mutagenesis of K37 but not of K646 attenuated this cooperativity. Loss of ATPase activity was about 75% in the K37A, 86% in the K646A mutant, and 95% in the K37A-K646A double mutant. These amino acid substitutions had only a marginal effect on the specific binding of UvrA to damaged DNA but drastically reduced its ability to deliver UvrB to the damage site. We find that the deficient UvrB loading activity of these mutant UvrA proteins results from their inability to associate with UvrB in the form of (UvrA)2(UvrB)1 complexes. We conclude that UvrA forms a dimer with two ATPase domains involving K37 and K646 and that the work performed by ATP hydrolysis is the delivery of UvrB to the damage site on DNA.  相似文献   

9.
The folding of alpha- and beta-tubulin requires three proteins: the heteromeric TCP-1-containing cytoplasmic chaperonin and two additional protein cofactors (A and B). We show that these cofactors participate in the folding process and do not merely trigger release, since in the presence of Mg-ATP alone, alpha- and beta-tubulin target proteins are discharged from cytoplasmic chaperonin in a nonnative form. Like the prokaryotic cochaperonin GroES, which interacts with the prototypical Escherichia coli chaperonin GroEL and regulates its ATPase activity, cofactor A modulates the ATPase activity of its cognate chaperonin. However, the sequence of cofactor A derived from a cloned cDNA defines a 13-kD polypeptide with no significant homology to other known proteins. Moreover, while GroES functions as a heptameric ring, cofactor A behaves as a dimer. Thus, cofactor A is a novel cochaperonin that is structurally unrelated to GroES.  相似文献   

10.
11.
The complete cDNA sequence of a mitochondrial protein from Chinese hamster ovary cells, designated P1, which was originally identified as a microtubule-related protein (Gupta, R.S., Ho, T.K.W., Moffat, M.R.K., and Gupta, R. (1982) J. Biol. Chem. 257, 1071-1078), has been determined. The P1 cDNA encodes a protein of 60,983 Da including a 26-amino acid putative mitochondrial targeting sequence at its N-terminal end. The deduced amino acid sequence of Chinese hamster P1 shows 97% identity to the human P1 protein. Most interestingly, the amino acid sequences of mammalian P1 proteins show extensive sequence homology (42-60% identical residues and an additional 15-25% conservative replacements) to the "chaperonin" family of bacterial, yeast, and plant proteins (viz. groEL protein of Escherichia coli, hsp 60 protein of yeast, and ribulose-1,5-bisphosphate carboxylase subunit binding protein of plant chloroplasts) and to the 60-65-kDa major antigenic protein of mycobacteria and Coxiella burnetii. The homology between mammalian P1 and other proteins begins after the putative mitochondrial presequence and extends up to the C-terminal end. Furthermore, similar to the chaperonin family of proteins, P1 appears to exist in cells as a homooligomeric complex of seven subunits and shows ATPase activity. These observations strongly indicate that P1 protein is a member of the chaperonin family and that it may be involved in a similar function in mammalian cells.  相似文献   

12.
Two novel rare mutations, MCAD approximately 842G-->C (R256T) and MCAD approximately 1166A-->G (K364R), have been investigated to assess how far the biochemical properties of the mutant proteins correlate with the clinical phenotype of medium chain acyl-CoA dehydrogenase (MCAD) deficiency. When the gene for K364R was overexpressed in Escherichia coli, the synthesized mutant protein only exhibited activity when the gene for chaperonin GroELS was co-overexpressed. Levels of activity correlated with the amounts of native MCAD protein visible in western blots. The R256T mutant, by contrast, displayed no activity either with or without chaperonin, but in this case a strong MCAD protein band was seen in the western blots throughout. The proteins were also purified, and the enzyme function and thermostability investigated. The K364R protein showed only moderate kinetic impairment, whereas the R256T protein was again totally inactive. Neither mutant showed marked depletion of FAD. The pure K364R protein was considerably less thermostable than wild-type MCAD. Western blots indicated that, although the R256T mutant protein is less thermostable than normal MCAD, it is much more stable than K364R. Though clinically asymptomatic thus far, both mutations have a severe impact on the biochemical phenotype of the protein. K364R, like several previously described MCAD mutant proteins, appears to be defective in folding. R256T, by contrast, is a well-folded protein that is nevertheless devoid of catalytic activity. How the mutations specifically affect the catalytic activity and the folding is further discussed.  相似文献   

13.
We have investigated the possible role of chaperonins groEL and groES in the folding and assembly of heterotetramers (alpha 2 beta 2) of mammalian mitochondrial branched-chain alpha-keto acid decarboxylase (E1) in Escherichia coli. The mature E1 alpha subunit fused to maltose-binding protein (MBP) was coexpressed with mature E1 beta on the same vector in ES- and EL- mutant strains. Only small or trace amounts of active E1 component were obtained. Cotransformation of the ES- mutant host with a second vector overexpressing groEL and groES resulted in a greater than 500-fold increase in E1-specific activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the content of both MBP-E1 alpha and E1 beta polypeptides was markedly increased in the presence of overexpressed chaperonin proteins. The time course studies showed that the increase in E1-specific activity and subunit levels correlated with the increase in groEL and groES until the concentration of the chaperonins reached a saturating level in the cell. The functional MBP-E1 fusion protein from ES- double transformants were purified by amylose resin affinity chromatography. The MBP moiety was removed by subsequent digestion with Factor Xa endoprotease, followed by Sephacryl S-300HR chromatography. It was found that E1 alpha and E1 beta assembled into an active 160-kDa species, which was consistent with the alpha 2 beta 2 structure of E1. The present results demonstrate that chaperonins groEL and groES promote folding and assembly of heterotetrameric proteins of mammalian mitochondrial origin.  相似文献   

14.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R ( recA2201 ) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo . We have combined the K72R variant of RecA with another mutation, RecA E38K ( recA730 ). In vitro , the double mutant RecA E38K/K72R ( recA730,2201 ) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro .  相似文献   

15.
The major heat shock protein, chaperonin 60, has been established to have intercellular signaling activity in addition to its established protein-folding function. Mycobacterium tuberculosis is one of a small proportion of bacteria to encode two chaperonin 60 proteins. We have demonstrated that chaperonin 60.1 from this bacterium is a very active stimulator of human monocytes. To determine structure/function relationships of chaperonin 60.1 we have cloned and expressed the apical, equatorial, and intermediate domains of this protein. We have found that the signaling activity of M. tuberculosis chaperonin 60.1 resides in the equatorial domain. This activity of the recombinant equatorial domain was completely blocked by treating the protein with proteinase K, ruling out lipopolysaccharide contamination as the cause of the cell activation. Blockade of the activity of the equatorial domain by anti-CD14 monoclonal antibodies reveals that this domain activates monocytes by binding to CD14. Looking at the oligomeric state of the active proteins, using native gel electrophoresis and protein cross-linking we found that recombinant M. tuberculosis chaperonin 60.1 fails to form the prototypic tetradecameric structure of chaperonin 60 proteins under the conditions tested and only forms dimers. It is therefore concluded that the monocyte-stimulating activity of M. tuberculosis Cpn60.1 resides in the monomeric subunit and within this subunit the biological activity is due to the equatorial domain.  相似文献   

16.
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously.  相似文献   

17.
The ATP-binding component (Component II, hereafter referred to as ClpA) of a two-component, ATP-dependent protease from Escherichia coli has been purified to homogeneity. ClpA is a protein with subunit Mr 81,000. It has an intrinsic ATPase activity and activates degradation of protein substrates only in the presence of a second component (Component I, hereafter referred to as ClpP), Mg2+, and ATP. The amount of ClpA varies by less than a factor of 2 in cells grown in different media and at temperatures from 30 to 42 degrees C. ClpA does not appear to be a heat-shock protein since its synthesis is not dependent on htpR. Antibodies against purified ClpA were used to identify lambda transducing phage bearing the clpA gene. The cloned gene contains a DNA sequence expected to code for the first 28 amino acids of ClpA, which were determined by protein sequencing of purified ClpA. The clpA gene in the phage was mutated by insertion of delta kan defective transposons and the mutations were transferred to E. coli by homologous recombination. The clpA gene was mapped to 19 min on the E. coli chromosome. Mutant cells with insertions early in the gene produce no ClpA protein detectable in Western blots, and extracts of such mutant cells have no detectable ClpA activity. clpA- mutants grow well under all conditions tested and are not defective in turnover of proteins during nitrogen starvation nor in the turnover of such highly unstable proteins as the lambda proteins O, N, and cII, or the E. coli proteins SulA, RcsA, and glutamate dehydrogenase. The degradation of abnormal canavanine-containing proteins is defective in clpA mutants especially in cells that also have a lon- mutation. Extracts of clpA- lon- cells have ATP-dependent casein degrading activity.  相似文献   

18.
The chaperonin GroEL assists protein folding through ATP-dependent, cooperative movements that alternately create folding chambers in its two rings. The substitution E461K at the interface between these two rings causes temperature-sensitive, defective protein folding in Escherichia coli. To understand the molecular defect, we have examined the mutant chaperonin by cryo-EM. The normal out-of-register alignment of contacts between subunits of opposing wild-type rings is changed in E461K to an in-register one. This is associated with loss of cooperativity in ATP binding and hydrolysis. Consistent with the loss of negative cooperativity between rings, the cochaperonin GroES binds simultaneously to both E461K rings. These GroES-bound structures were unstable at higher temperature, dissociating into complexes of single E461K rings associated with GroES. Lacking the allosteric signal from the opposite ring, these complexes cannot release their GroES and become trapped, dead-end states.  相似文献   

19.
A RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein.  相似文献   

20.
In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa protein with an N-terminal ATPase domain belonging to the AAA(+) superfamily and a C-terminal protease domain including a putative catalytic triad. Interestingly, a secondary structure prediction suggested the presence of two transmembrane helices within the ATPase domain and Western blot analysis using specific antiserum against the recombinant protein clearly indicated that Lon(Tk) was actually a membrane-bound protein. The recombinant Lon(Tk) possessed thermostable ATPase activity and peptide cleavage activity toward fluorogenic peptides with optimum temperatures of 95 and 70 degrees C, respectively. Unlike the enzyme from Escherichia coli, we found that Lon(Tk) showed higher peptide cleavage activity in the absence of ATP than it did in the presence of ATP. When three kinds of proteins with different thermostabilities were examined as substrates, it was found that Lon(Tk) required ATP for degradation of folded proteins, probably due to a chaperone-like function of the ATPase domain, along with ATP hydrolysis. In contrast, Lon(Tk) degraded unfolded proteins in an ATP-independent manner, suggesting a mode of action in Lon(Tk) different from that of its bacterial counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号