首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious and fatal neurodegenerative disorders in humans and animals. Pathological features of TSEs include the conversion of cellular prion protein (PrP(C)) into an altered disease-associated conformation generally designated PrP(Sc), abnormal deposition of PrP(Sc) aggregates, and spongiform degeneration of the brain. The molecular steps leading to PrP(C) aggregation are unknown. Here, we have utilized an inducible oligomerization strategy to test if, in the absence of any infectious prion particles, the encounter between PrP(C) molecules may trigger its aggregation in neuronal cells. A chimeric PrP(C) composed of one (Fv1) or two (Fv2) modified FK506-binding protein (Fv) fused with PrP(C) were created, and transfected in N2a cells. Similar to PrP(C), Fv1-PrP and Fv2-PrP were glycosylated, displayed normal localization, and anti-apoptotic function. When cells were treated with the dimeric Fv ligand AP20187, to induce dimerization (Fv1) or oligomerization (Fv2) of PrP(C), both dimerization and oligomerization of PrP(C) resulted in the de novo production, release and deposition of extracellular PrP aggregates. Aggregates were insoluble in non-ionic detergents and partially resistant to proteinase K. These findings demonstrate that homologous interactions between PrP(C) molecules may constitute a minimal and sufficient molecular event leading to PrP(C) aggregation and extracellular deposition.  相似文献   

2.
Prion diseases are zoonotic infectious diseases commonly transmissible among animals via prion infections with an accompanying deficiency of cellular prion protein (PrP(C)) and accumulation of an abnormal isoform of prion protein (PrP(Sc)), which are observed in neurons in the event of injury and disease. To understand the role of PrP(C) in the neuron in health and diseases, we have established an immortalized neuronal cell line HpL3-4 from primary hippocampal cells of prion protein (PrP) gene-deficient mice by using a retroviral vector encoding Simian Virus 40 Large T antigen (SV40 LTag). The HpL3-4 cells exhibit cell-type-specific proteins for the neuronal precursor lineage. Recently, this group and other groups have established PrP-deficient cell lines from many kinds of cell types including glia, fibroblasts and neuronal cells, which will have a broad range of applications in prion biology. In this review, we focus on recently obtained information about PrP functions and possible studies on prion infections using the PrPdeficient cell lines.  相似文献   

3.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control.  相似文献   

4.
The fibrillogenic peptide corresponding to the residues 106-126 of the prion protein sequence (PrP 106-126) is largely used to explore the neurotoxic mechanisms underlying the prion disease. However, whether the neuronal toxicity of PrP 106-126 is caused by a soluble or fibrillar form of this peptide is still unknown. The aim of this study was to correlate the structural state of this peptide with its neurotoxicity. Here we show that the two conserved Gly114 and Gly119 residues, in force of their intrinsic flexibility, prevent the peptide assuming a structured conformation, favouring its aggregation in amyloid fibrils. The substitution of both Gly114 and Gly119 with alanine residues (PrP 106-126 AA mutated peptide) reduces the flexibility of this prion fragment and results in a soluble, beta-structured peptide. Moreover, PrP 106-126 AA fragment was highly toxic when incubated with neuroblastoma cells, likely behaving as a neurotoxic protofibrillar intermediate of the wild-type PrP 106-126. These data further confirm that the fibrillar aggregation is not necessary for the induction of the toxic effects of PrP 106-126.  相似文献   

5.
A nine-octapeptide insertion in the prion protein (PrP) gene is associated with an inherited form of human prion disease. Transgenic (Tg) mice that express the mouse homolog of this mutation (designated PG14) spontaneously accumulate in their brains an insoluble and weakly protease-resistant form of the mutant protein. This form (designated PG14(Spon)) is highly neurotoxic, but is not infectious in animal bioassays. In contrast, when Tg(PG14) mice are inoculated with the Rocky Mountain Laboratory (RML) strain of prions, they accumulate a different form of PG14 PrP (designated PG14(RML)) that is highly protease resistant and infectious in animal transmission experiments. We have been interested in characterizing the molecular properties of PG14(Spon) and PG14(RML), with a view to identifying features that determine two, apparently distinct properties of PrP aggregates: their infectivity and their pathogenicity. In this paper, we have subjected PG14(Spon) and PG14(RML) to a panel of assays commonly used to distinguish infectious PrP (PrP(Sc)) from cellular PrP (PrP(C)), including immobilized metal affinity chromatography, precipitation with sodium phosphotungstate, and immunoprecipitation with PrP(C)- and PrP(Sc)-specific antibodies. Surprisingly, we found that aggregates of PG14(Spon) and PG14(RML) behave identically to each other, and to authentic PrP(Sc), in each of these biochemical assays. PG14(Spon) however, in contrast to PG14(RML) and PrP(Sc), was unable to seed the misfolding of PrP(C) in an in vitro protein misfolding cyclic amplification reaction. Collectively, these results suggest that infectious and non-infectious aggregates of PrP share common structural features accounting for their toxicity, and that self-propagation of PrP involves more subtle molecular differences.  相似文献   

6.
Prion diseases appear to be caused by the aggregation of the cellular prion protein (PrP(C)) into an infectious form denoted PrP(Sc). The in vitro aggregation of the prion protein has been extensively investigated, yet many of these studies utilize truncated polypeptides. Because the C-terminal portion of PrP(Sc) is protease-resistant and retains infectivity, it is assumed that studies on this fragment are most relevant. The full-length protein can be distinguished from the truncated protein because it contains a largely structured, alpha-helical, C-terminal region in addition to an N terminus that is unstructured in the absence of metal ion binding. Herein, the in vitro aggregation of a truncated portion of the prion protein (PrP 90-231) and a full-length version (PrP 23-231) were compared. In each case, concentration-dependent aggregation was analyzed to discern whether it proceeds by a nucleation-dependent pathway. Both protein constructs appear to aggregate via a nucleated polymerization with a small nucleus size, yet the later steps differ. The full-length protein forms larger aggregates than the truncated protein, indicating that the N terminus may mediate higher-order aggregation processes. In addition, the N terminus has an influence on the assembly state of PrP before aggregation begins, causing the full-length protein to adopt several oligomeric forms in a neutral pH buffer. Our results emphasize the importance of studying the full-length protein in addition to the truncated forms for in vitro aggregation studies in order to make valid hypotheses about the mechanisms of prion aggregation and the distribution of aggregates in vivo.  相似文献   

7.
In infectious and familial prion disorders, neurodegeneration is often seen without obvious deposits of the scrapie prion protein (PrP(Sc)), the principal cause of neuronal death in prion disorders. In such cases, neurotoxicity must be mediated by alternative pathways of cell death. One such pathway is through a transmembrane form of PrP. We have investigated the relationship between intracellular accumulation of prion protein aggregates and the consequent up-regulation of transmembrane prion protein in a cell model. Here, we report that exposure of neuroblastoma cells to the prion peptide 106-126 catalyzes the aggregation of cellular prion protein to a weakly proteinase K-resistant form and induces the synthesis of transmembrane prion protein, the proposed mediator of neurotoxicity in certain prion disorders. The N terminus of newly synthesized transmembrane prion protein is cleaved spontaneously on the cytosolic face of the endoplasmic reticulum, and the truncated C-terminal fragment accumulates on the cell surface. Our results suggest that neurotoxicity in prion disorders is mediated by a complex pathway involving transmembrane prion protein and not by deposits of aggregated and proteinase K-resistant PrP alone.  相似文献   

8.
Prion diseases are characterised at autopsy by neuronal loss and accumulation of amorphous protein aggregates and/or amyloid fibrils in the brains of humans and animals. These protein deposits result from the conversion of the cellular, mainly alpha-helical prion protein (PrP(C)) to the beta-sheet-rich isoform (PrP(Sc)). Although the pathogenic mechanism of prion diseases is not fully understood, it appears that protein aggregation is itself neurotoxic and not the product of cell death. The precise nature of the neurotoxic species and mechanism of cell death are yet to be determined, although recent studies with other amyloidogenic proteins suggest that ordered pre-fibrillar or oligomeric forms may be responsible for cellular dysfunction. In this study we have refolded recombinant prion protein (rPrP) to two distinct forms rich in beta-sheet structure with an intact disulphide bond. Here we report on the structural properties of globular aggregates and pre-fibrils of rPrP and show that both states are toxic to neuronal cells in culture. We show that exogenous rPrP aggregates are internalised by neuronal cells and found in the cytoplasm. We also measured the changes in electrophysiological properties of cultured neuronal cells on exposure to exogenous prion aggregates and discuss the implications of these findings.  相似文献   

9.
Previous studies have shown that cellular prion protein (PrP(C)) plays anti-apoptotic and antioxidative role against cell death induced by serum-deprivation (SDP) in an immortalized prion protein gene-deficient neuronal cell line derived from Rikn prion protein (PrP) gene-deficient (Prnp(-/-)) mice, which ectopically produce excess Doppel (Dpl) (PrP-like glycoprotein). To investigate whether PrP(C) inhibits apoptotic neuronal cell death without Dpl, an immortalized cell line was established from the brain of ZrchI Prnp(-/-) mice, which do not show ectopic expression of Dpl. The results using a ZrchI neuronal Prnp(-/-) cell line (NpL2) showed that PrP(C) potently inhibited SDP-induced apoptotic cell death. Furthermore, PrP(C) expression enhanced the superoxide dismutase (SOD) activity in NpL2 cells. These results indicate that Dpl production did not affect anti-apoptotic and anti-oxidative functions of PrP, suggesting that PrP(C) may be directly correlated with protection against oxidative stress.  相似文献   

10.
Tau融合蛋白及其缺失突变体与朊蛋白的体外作用分析   总被引:1,自引:0,他引:1  
在部分朊病毒病(prion diseases)中,高度磷酸化的微管相关蛋白tau与朊蛋白(prion protein,PrP)发生共定位,tau蛋白可能在朊病毒病的病理机制中有重要作用. 本室已经证明二者可以发生分子间相互作用,本文进一步分析了tau蛋白与prion的体外相互作用及作用位点. 利用RT-PCR方法从人源细胞系SHSY5Y cDNA中扩增出微管相关蛋白tau全长cDNA序列,克隆至质粒pGEX-2T载体,在大肠杆菌中诱导表达融合蛋白GST-tau. 利用GST pull-down及免疫共沉淀方法检测全长tau蛋白与PrP23-231的分子间相互作用. 进一步表达tau 蛋白的各种缺失突变体,确定tau蛋白与PrP蛋白的相互作用位点. 结果表明,所表达的全长tau蛋白及各种缺失突变体均为可溶性蛋白,Western印迹结果显示,各种蛋白均能很好的被tau蛋白单抗识别. GST pull-down和免疫共沉淀实验均显示,原核表达的全长tau蛋白可与全长的PrP蛋白在体外发生相互作用,并确定相互作用位点位于tau蛋白的N端序列及中段的重复区. 上述结果为研究tau蛋白与PrP的相互作用在朊病毒病的发病机制中的意义提供了一定的理论基础.  相似文献   

11.
Because of high tendency of the prion protein (PrP) to aggregate, the exact PrP isoform responsible for prion diseases as well as the pathological mechanism that it activates remains still controversial. In this study, we show that a pre-fibrillar, monomeric or small oligomeric conformation of the human PrP fragment 90–231 (hPrP90–231), rather than soluble or fibrillar large aggregates, represents the neurotoxic species. In particular, we demonstrate that monomeric mild-denatured hPrP90–231 (incubated for 1 h at 53°C) induces SH-SY5Y neuroblastoma cell death, while, when structured in large aggregates, it is ineffective. Using spectroscopic and cellular techniques we demonstrate that this toxic conformer is characterized by a high exposure of hydrophobic regions that favors the intracellular accumulation of the protein. Inside the cells hPrP90–231 is mainly compartmentalized into the lysosomes where it may trigger pro-apoptotic 'cell death' signals. The PrP toxic conformation, which we have obtained inducing a controlled in vitro conformational change of the protein, might mimic mild-unfolding events occurring in vivo, in the presence of specific mutations, oxidative reactions or proteolysis. Thus, in light of this model, we propose that novel therapeutic strategies, designed to inhibit the interaction of the toxic PrP with the plasmamembrane, could be beneficial to prevent the formation of intracellular neurotoxic aggregates and ultimately the neuronal death.  相似文献   

12.
Yang W  Yang H  Tien P 《FEBS letters》2006,580(17):4231-4235
Self-propagation is characteristic property for a prion conformation. Previous studies revealed that prion protein expressed in the cytoplasm gained a PrP(Sc)-like conformation. However, it remains unclear whether the PrP(Sc)-like conformation has the self-propagating property. We found that PrP partially purified from yeast cytoplasm formed amyloid fiber like structures, and we found that the PrP(Sc)-like conformation is able to convert normal PrP(C) in the brain homogenate to a proteinase K-resistant conformation. These results suggest that yeast cytoplasm expressed recombinant PrP(Sc)-like conformation has the characteristic self-propagating property of a prion, which may have implications in the pathogenesis of sporadic and inherited prion diseases.  相似文献   

13.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

14.
Studies in transgenic mice revealed that neurodegeneration induced by scrapie prion (PrP(Sc)) propagation is dependent on neuronal expression of the cellular prion protein PrP(C). On the other hand, there is evidence that PrP(C) itself has a stress-protective activity. Here, we show that the toxic activity of PrP(Sc) and the protective activity of PrP(C) are interconnected. With a novel co-cultivation assay, we demonstrate that PrP(Sc) can induce apoptotic signalling in PrP(C)-expressing cells. However, cells expressing PrP mutants with an impaired stress-protective activity were resistant to PrP(Sc)-induced toxicity. We also show that the internal hydrophobic domain promotes dimer formation of PrP and that dimerization of PrP is linked to its stress-protective activity. PrP mutants defective in dimer formation did not confer enhanced stress tolerance. Moreover, in chronically scrapie-infected neuroblastoma cells the amount of PrP(C) dimers inversely correlated with the amount of PrP(Sc) and the resistance of the cells to various stress conditions. Our results provide new insight into the mechanism of PrP(C)-mediated neuroprotection and indicate that pathological PrP conformers abuse PrP(C)-dependent pathways for apoptotic signalling.  相似文献   

15.
The cellular mechanisms by which prions cause neurological dysfunction are poorly understood. To address this issue, we have been using cultured cells to analyze the localization, biosynthesis, and metabolism of PrP molecules carrying mutations associated with familial prion diseases. We report here that mutant PrP molecules are delayed in their maturation to an endoglycosidase H-resistant form after biosynthetic labeling, suggesting that they are impaired in their exit from the endoplasmic reticulum (ER). However, we find that proteasome inhibitors have no effect on the maturation or turnover of either mutant or wild-type PrP molecules. Thus, in contrast to recent studies from other laboratories, our work indicates that PrP is not subject to retrotranslocation from the ER into the cytoplasm prior to degradation by the proteasome. We find that in transfected cells, but not in cultured neurons, proteasome inhibitors cause accumulation of an unglycosylated, signal peptide-bearing form of PrP on the cytoplasmic face of the ER membrane. Thus, under conditions of elevated expression, a small fraction of PrP chains is not translocated into the ER lumen during synthesis, and is rapidly degraded in the cytoplasm by the proteasome. Finally, we report a previously unappreciated artifact caused by treatment of cells with proteasome inhibitors: an increase in PrP mRNA level and synthetic rate when the protein is expressed from a vector containing a viral promoter. We suggest that this phenomenon may explain some of the dramatic effects of proteasome inhibitors observed in other studies. Our results clarify the role of the proteasome in the cell biology of PrP, and suggest reasonable hypotheses for the molecular pathology of inherited prion diseases.  相似文献   

16.
The conversion of protease-sensitive prion protein (PrP-sen) to a high beta-sheet, protease-resistant and often fibrillar form (PrP-res) is a central event in transmissible spongiform encephalopathies (TSE) or prion diseases. This conversion can be induced by PrP-res itself in cell-free conversion reactions. The detergent sodium N-lauroyl sarkosinate (sarkosyl) is a detergent that is widely used in PrP-res purifications and is known to stimulate the PrP-res-induced conversion reaction. Here we report effects of sarkosyl and other detergents on recombinant hamster PrP-sen purified from mammalian cells under oxidizing conditions that maintain the single native disulfide bond. Low concentrations of sarkosyl (0.001-0.1%) induced aggregation of PrP-sen molecules, increased light scattering, altered fluorescence excitation and emission spectra, and enhanced the proportion of beta-sheet secondary structure according to circular dichroism and infrared spectroscopies. An enhancement of beta-sheet content was also seen with 0.001% sodium dodecyl sulfate (SDS) but not several other types of detergents. Electron microscopy revealed that sarkosyl induced the formation of both amorphous and fibrillar aggregates. The fibrils appeared to be constructed from spherical bead-like protofibrils. Neither TSE infectivity nor the characteristic partial proteinase K resistance of PrP-res was detected in the sarkosyl-induced PrP aggregates. We conclude that certain anionic detergents can disrupt the conformation of PrP-sen and induce high beta-sheet aggregates that are distinct from scrapie-associated PrP-res in terms of protease-resistance, infrared spectrum and infectivity. These results reinforce the idea that not all high-beta aggregates of PrP are equivalent to the pathologic form, PrP-res.  相似文献   

17.
The efficient expression of exogenous prion protein (PrP) molecules in mouse neuroblastoma cells that are chronically infected with murine scrapie prions (ScN2a cells; Butler, D.A., et al., 1988, J. Virol. 62, 1558-1564) and in transgenic mice is described. This technology allows investigation of the PrP molecule for structural regions involved in determining species specificity, as well as ablation experiments designed to address the functionality of particular regions of the PrP molecule. Previous reports demonstrated that the PrP gene specifies the host range for susceptibility of transgenic animals to prions (Scott, M., et al., 1989, Cell 59, 847-857; Prusiner, S.B., et al., 1990, Cell 63, 673-686). Consistent with these results, we showed that Syrian hamster (SHa) PrP is ineligible for efficient conversion to PrPSc in ScN2a cells. By constructing a series of chimeric mouse (Mo)/SHaPrP genes, we developed an epitopically tagged functional variant of the MoPrP gene, which can efficiently form protease-resistant PrP molecules upon expression in ScN2a cells. The presence of a defined epitope for an SHa-specific monoclonal antibody allows the products of this chimeric gene to be discriminated from endogenous MoPrP and creates a useful reagent for exploring structure/function relationships via targeted mutagenesis. In addition, we developed a transgenic mouse expression vector by manipulation of an SHaPrP cosmid clone. This vector permits the efficient expression of foreign PrP genes in the brains of transgenic animals, enabling pathological consequences of in vitro mutagenesis to be studied.  相似文献   

18.
A wealth of evidence supports the view that conformational change of the prion protein, PrPC, into a pathogenic isoform, PrPSc, is the hallmark of sporadic, infectious, and inherited forms of prion disease. Although the central role played by PrPSc in the pathogenesis of prion disease is appreciated, the cellular mechanisms that recognize PrPSc and modulate its production, clearance, and neural toxicity have not been elucidated. To address these questions, we used a tissue-specific expression system to express wild-type and disease-associated PrP molecules heterologously in Drosophila melanogaster. Our results indicate that Drosophila brain possesses a specific and saturable mechanism that suppresses the accumulation of PG14, a disease-associated insertional PrP mutant. We also found that wild-type PrP molecules are maintained in a detergent-soluble conformation throughout life in Drosophila brain neurons, whereas they become detergent-insoluble in retinal cells as flies age. PG14 protein expression in Drosophila eye did not cause retinal pathology. Our work reveals the presence of mechanisms in neurons that specifically counterbalance the production of misfolded PrP conformations, and provides an opportunity to study these processes in a model organism amenable to genetic analysis.  相似文献   

19.
The prion protein (PrP) possesses sequence-specific domains that endow the molecule with neuroprotective and neurotoxic activities, and that may contribute to the pathogenesis of prion diseases. To further define critical neurotoxic determinants within PrP, we previously generated Tg(ΔCR) mice that express a form of PrP harboring a deletion of 21 amino acids within the central domain of the protein [ Li et al., EMBO J . 26 (2007), 548 ]. These animals exhibit a neonatal lethal phenotype that is dose-dependently rescued by co-expression of wild-type PrP. In this study, we examined the localization and cell biological properties of the PrP(ΔCR) protein in cultured cells to further understand the mechanism of PrP(ΔCR) neurotoxicity. We found that the distribution of PrP(ΔCR) was identical to that of wild-type PrP in multiple cell lines of both neuronal and non-neuronal origin, and that co-expression of the two proteins did not alter the localization of either one. Both proteins were found in lipid rafts, and both were localized to the apical surface in polarized epithelial cells. Taken together, our results suggest that PrP(ΔCR) toxicity is not a result of mislocalization or aggregation of the protein, and more likely stems from altered binding interactions leading to the activation of deleterious signaling pathways.  相似文献   

20.
The neuropathological features human prion diseases comprise spongiform change, neuronal loss, astrocytic and microglial proliferation and the accumulation of the abnormal isoform of prion protein (PrPRES) in the central nervous system. Variant Creutzfeldt-Jakob disease (CJD) is a novel human prion disease which appears to result from infection by the bovine spongiform encephalopathy (BSE) agent. The neuropathology of variant CJD shows morphological and immunocytochemical characteristics distinct from all other types of human prion disease, and is characterised by abundant florid and cluster plaques in the cerebrum and cerebellum, and widespread accumulation of PrPRES on immunocytochemistry. Spongiform change is most marked in the caudate nucleus and putamen, and the thalamus exhibits severe neuronal loss and gliosis, which is most marked in the posterior nuclei and correlates with the areas of high signal seen in the posterior thalamus on MRI examination of the brain. Western blot analysis of PrPRES on frozen brain tissue in variant CJD tissue shows a uniform isotype, with a glycoform ratio distinct from sporadic CJD. PrPRES accumulation is widespread in lymphoid tissues in vCJD. All cases of variant CJD are methionine homozygotes at codon 129 of the PrP gene. Histological and biochemical techniques will be required to identify cases of 'human BSE' in individuals who are MV or VV at codon 129 of the PrP gene. Continued surveillance is required to investigate this possibility in the UK and other countries where BSE has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号