首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Issues regarding understanding of evolution and resistance to evolution education in the United States are of key importance to biology educators at all levels. While research has measured student views toward evolution at single points in time, few studies have been published investigating whether views of college seniors are any different than first-year students in the same degree program. Additionally, students choosing to major in biological sciences have largely been overlooked, as if their acceptance of evolution is assumed. This study investigated the understanding of evolution and attitude toward evolution held by students majoring in biological science during their first and fourth years in a public research university. Participants included students in a first-year introductory biology course intended for biological science majors and graduating seniors earning degrees in either biology or genetics. The portion of the survey reported here consisted of quantitative measures of students’ understanding of core concepts of evolution and their attitude toward evolution. The results indicate that students’ understanding of particular evolutionary concepts is significantly higher among seniors, but their attitude toward evolution is only slightly improved compared to their first-year student peers. When comparing first-year students and seniors, students’ theistic position was not significantly different.  相似文献   

2.
Learning about biological evolution presents particular challenges for students. Barriers to learning come in the form of students’ prior conceptions that conflict with the scientific perspective of biological change. Theory and research from developmental and educational psychology provide insight into these barriers. Helping students understand evolution is not simply a matter of adding to their existing knowledge, but rather, it means helping them to see the world in new and different ways. Theoretical perspectives on creating change in students’ conceptions have implications for teaching about biological evolution. The material is based upon work supported by the National Science Foundation: Grant #0635629 to all three authors, #0133446 to the second author, and #0540152 to the third author.  相似文献   

3.
The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n = 237, nonmajors n = 239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students’ attitudes toward evolution; (3) students’ position about the teaching of human evolution; (4) evolution in science exams; and (5) students’ willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists.  相似文献   

4.
The learning and teaching of biological evolution is conceptually challenging. To fully comprehend evolution, it is posited that individuals also need to understand the roles that the nature of science and situations of chance play in the process. The consistent detection of misconceptions of evolution suggests that new approaches to increasing understanding need to be explored. I predicted that preservice teachers’ ideas for teaching biological evolution could be influenced by three brief web-based interventions, one focused on the common misconceptions of evolution, one on the nature of science, and one on situations of uncertainty in the context of evolution. An experimental group received a combination of the three web-based tutorials while a control group received the misconceptions and nature of science instruction and a time on task filler tutorial. Participants were directed to develop a lesson idea applying the knowledge they learned from the tutorials. The lesson ideas were examined for evidence of the influence of the web-based instruction, participant understanding and misconceptions of concepts, and their ideas about teaching evolution. The results of this study revealed that the participating preservice teachers held a wide range of conception and misconception of evolution, were somewhat influenced by the tutorials, and had an array of visions for teaching evolution. The outcomes support the need for further investigation into the multifaceted nature of preparing preservice teachers to teach evolution.  相似文献   

5.
We explored the relationship between epistemological beliefs and nature of science in a college biology course. One hundred thirty-three college students participated in the research. Exploratory factor analysis with 29 Nature of Science (NOS) items yielded three aspects of NOS: empirical, tentative, and sociocultural nature of scientific knowledge. Pearson r correlations suggested that students who have immature epistemological beliefs are more likely to also have immature beliefs of nature of science. In addition, students’ epistemological beliefs significantly correlate with their conceptual change but their beliefs about nature of science did not. The research is significant in that it provides empirical evidence explaining the relationship between students’ epistemological beliefs and nature of science as well as the relationships between epistemological beliefs and conceptual change in evolution theory.  相似文献   

6.
7.
Brian Alters 《Evolution》2010,3(2):231-235
Instructors’ apprehensions and the decisions instructors make about pedagogy are often linked when it comes to teaching evolution. Whether it is the reticence of K-12 teachers that their instruction may affect their students’ religious beliefs detrimentally or that they may become caught up in some administrative, media, parental, or school political turmoil or whether it is the apprehension of college students who perceive that their religious beliefs are being explicitly challenged, such fears can be reduced by understanding their roots and by honing pedagogy in ways that reduce perceived threats. This article describes why it is prudent to address these often secretly held apprehensions and how to help instructors feel free to employ their best pedagogical methods to teach evolution without lingering fear. Some suggestions are given for pre-college and college instructors interested in combining effective pedagogy with as little perceived threat as possible. Methods are offered that allow instructors to focus on underlying scientific misconceptions even if those misconceptions are ultimately facilitated by non-scientific sources, while giving creationist or creationist-leaning students a chance to learn the appropriate scientific conceptions without their religious beliefs being explicitly threatened in a science course.  相似文献   

8.
College students do not come to biological sciences classes, including biological anthropology, as “blank slates.” Rather, these students have complex and strongly held scientific misconceptions that often interfere with their ability to understand accurate explanations that are presented in class. Research indicates that a scientific misconception cannot be corrected by simply presenting accurate information; the misconception must be made explicit, and the student must decide for him or herself that it is inaccurate. The first step in helping to facilitate such conceptual change among college students is to understand the nature of the scientific misconceptions. We surveyed 547 undergraduate students at the University of Missouri-Columbia on their understanding of the nature and language of science, the mechanisms of evolution, and their support for both Lamarckian inheritance and teleological evolution. We found few significant sex differences among the respondents and identified some common themes in the students’ misconceptions. Our survey results show that student understanding of evolutionary processes is limited, even among students who accept the validity of biological evolution. We also found that confidence in one’s knowledge of science is not related to actual understanding. We advise instructors in biological anthropology courses to survey their students in order to identify the class-specific scientific misconceptions, and we urge faculty members to incorporate active learning strategies in their courses in order to facilitate conceptual change among the students.  相似文献   

9.
These series of lessons uses the process of student inquiry to teach the concepts of force and motion identified in the National Science Education Standards for grades 5-8. The lesson plan also uses technology as a teaching tool through the use of interactive Web sites. The lessons are built on the 5-E format and feature imbedded assessments.  相似文献   

10.
11.
Understanding the basic mechanism of evolution by natural selection together with examples of how it works in nature is crucial for explaining and teaching the workings of biology and ecology to young students. Dobzhansky said it best in his advice to educators of biology: “Nothing in biology makes sense except in the light of evolution.” This premise is true at all levels of biology but especially so in the elementary years where foundations of science knowledge are laid. Elementary students are capable of learning cohesive and connected stories of biological principles and learning them within a no-holds-barred arena wherein concepts and processes usually reserved for high school years are taught with special care, appropriate exercises, and patient explanations. This story must include solid introductions to the fundamental principles of evolution by natural selection that are threaded within and alongside those of basic biology and ecology. This paper attempts to make the case for the inclusion of connected stories of biology in the earliest years of education and to include within that education the unifying theme of all biology and ecology studies—evolution.  相似文献   

12.
Recent science education reform has led to an increased emphasis on engaging students in inquiry and science practices rather than having them simply memorize scientific facts. However, many teachers of elementary science may themselves have had more traditional science learning experiences, and may therefore be unsure about inquiry-based teaching methods. One way to enhance preservice teachers' comfort with and desire to teach science using a hands-on approach might be to engage them in science learning experiences alongside children during their educator preparation program. The purpose of this article is to share how one faculty member and a cooperating teacher from a partner school involve teacher candidates in working with children in the school's garden, allowing them to personally experience inquiry while witnessing firsthand the potential benefits to children of authentic science learning through garden based activities.  相似文献   

13.
At the heart of debates among creationists and evolutionists are questions about scientific integrity and rigor. Creationists often justify their rejection of biological evolution by claiming that the methodologies and interpretations of evolutionary scientists are flawed. A consideration of creationists’ critiques of the scientific data, however, reveals a deficient understanding and appreciation of the nature of the scientific process. It is essential that our schools educate students about the character of scientific inquiry. Clarifying the nature and limitation of scientific knowledge for our students will equip our students to evaluate evolutionary or creationist arguments critically. Recognizing and teaching both the strengths and limitations of the scientific process will do much to further the ongoing dialogue between science and religion.  相似文献   

14.
Genetic diversity is a core concept in evolutionary biology; genetic variation is a prerequisite for heritable differential selection, and biodiversity plays a central role in debates about environmental policy today. The technique of gel electrophoresis provides a simple, visual demonstration of the variation that exists on the genetic level among individuals of a species. “DNA fingerprinting”, in particular, is a method that exploits variation within species and has been explored extensively by the news media and popular television shows. In this paper, we suggest that science educators can capitalize on this momentum of interest and incorporate gel electrophoresis to their teaching as a starting point for the examination of genetic diversity that connects fundamental concepts of the molecular, cellular, organismic, and population levels of ecological organization. As a pedagogical tool toward this aim, we examine how increasingly complex inquiry learning can be supported in classrooms by the application of software tools called “virtual laboratories”. The paper is a synthesis of current research on the integration of software design and instructional design to illustrate how two software tools can be employed for different levels of inquiry learning.  相似文献   

15.
Evolution is the underlying framework upon which all biology is based; however, when it comes to learning evolutionary concepts, many students encounter obstacles. There are many reasons as to why these obstacles occur. These reasons deal with evolution being treated as a discrete topic among many within a biology curriculum, misunderstanding the nature of science, and personal difficulties with understanding due to evolution’s seemingly abstract nature. In this article, we propose a different way of thinking about and teaching evolution in grades K-12, and it surrounds four core areas essential to the understanding of evolution: variation, selection, inheritance, and deep time. Possibilities for how these areas can affect learning are described and implications for assessment are also discussed.  相似文献   

16.
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense of the world around them. One such partnership is called the student–teacher–scientist partnership, in which teachers and their students participate in and contribute to the research of scientists. This article explores a partnership between a 10th-grade biology teacher, her students, and practicing scientists who collaborated in the design, implementation and evaluation of a horse evolution unit. The primary goal of the collaborative activity was to involve teachers and students in a process of conceptual change as a means of eliminating common misconceptions implicit in horse evolution displays in museums in various parts of the country. The evidence-based lessons developed enhanced students’ understanding of concepts in macroevolution but also connected the science classroom with a community of scientists whose personalization of the horse evolution unit situated biological concepts and the learning experience within the context of real-world issues.  相似文献   

17.
《Science activities》2013,50(3):106-112
Thermodynamics, specifically energy and heat, is a major concept in the foundations of physics and physical science. To determine a strategy to teach thermodynamics meaningfully, the authors conducted classroom action research using interviews to determine secondary physics students' current conceptions of thermodynamics. On the basis of the findings, the authors developed and implemented a science unit to facilitate students' reconstructions of their ideas toward more scientifically appropriate concepts. The lessons, using a learning cycle strategy, and results of the pre- and post-interviews are presented.  相似文献   

18.
Vocabulary is the essential element of comprehending concepts in content areas. Many words used in science content-area materials are used to define concepts and to increase the conceptual development of the content area. Conceptual development is a major goal of content-area instruction. Without a clear understanding of the language of the science content, students will certainly experience difficulty and a lack of interest with their science content-area material. Providing students with inquiry strategic vocabulary strategies can significantly support their understanding and interest concerning the language of science. As a result of using engaged vocabulary strategies, teachers can help students bridge the gap between the language of the science content and the language and background knowledge that students bring to the class. This article is easily adaptable for grades 6-12, and it is applicable to all science areas. It provides the middle and high school science teacher with five engaged learning vocabulary strategies that will help students become active participants in the learning process as they master their content area material. In addition, the article offers a pre- and postevaluation Science Vocabulary Questionnaire.  相似文献   

19.
Pre-medical students are certainly a widely varied group, with different motivations and experiences, different skills sets and interests. However, they often tend to approach their undergraduate education as a necessary evil that they must endure in order to achieve their ultimate goals. This article summarizes recent literature addressing some of the questions that have been raised regarding pre-medical education programs. Are students prepared for the intellectual, emotional, and even physical challenges of medical training? What deficiencies are commonly seen in entering medical students? What are students’ perceptions of how well their pre-medical studies helped them? Many of these studies have resulted in a call for more science training, while some have advocated for less, but with an enhanced focus on humanistic studies. We supply a brief outline of our Evolutionary Studies (EvoS) program and reflect upon how participation in this program can enhance pre-medical students’ education. Importantly, we argue that EvoS can expand students’ depth of understanding of science, as well as nurture their ability to think about the needs of their patients and the context of their medical practice.  相似文献   

20.
This study examined what worldviews are present among Dutch students and teachers and how the students cope with scientific knowledge acquired in the biology classroom. Furthermore, we investigated what learning and teaching strategies teachers adopt when they teach about evolution and worldviews. For this survey, 10 schools for higher general secondary education or pre-university level were selected. The data showed that most teachers did not have an articulated learning and teaching strategy. Controversial topics and discussions with students about their own worldviews were ignored in the classroom. Furthermore, the data revealed that students and teachers have a large variety of different worldviews. Some students acknowledged having difficulties coping with the knowledge gained from the classroom, because it contradicted their own worldviews. These results support our hypothesis that there is need for an explicit learning and teaching strategy that supports both teachers and students to teach and learn about evolution in multiple contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号