首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mitochondrial DNA sequences of approximately 1.5 kbp including the NADH dehydrogenase subunit 2 (ND2) gene and its flanking gene regions were determined for 20 species from the freshwater fish family Channidae and 3 species from Nandidae, Badidae, and Osphronemidae. Channa orientalis and C. gachua had an approximately 170-bp insertion between the tRNAMet and ND2 genes, where a 5′-half of the insertion was similar to the 5′-end portion of the ND2 gene and a 3′-half was homologous to the tRNAMet gene. This insertion may thus have originated from a tandem gene duplication that occurred in a common ancestor of these two sister species. Molecular phylogenetic analyses from different tree-building methods consistently suggested the mutual monophyly of the African and Asian taxa and the existence of several clades within the Asian taxa, some of which correspond to distinct morphological features. Our molecular phylogeny clearly supported multiple independent losses of pelvic fins on Asian lineages in parallel. Divergence time estimation based on some reasonable assumptions without assuming the molecular clock suggested the early Cretaceous divergence of the African and Asian channids. The results thus support an ancient vicariant divergence of the African and Asian channids, rather than the more recent dispersal between African and Eurasian continents.  相似文献   

2.
Our analysis of the ND2 sequences revealed six clades within winter wrens (Troglodytes troglodytes). These clades corresponded to six geographical regions: western Nearctic, eastern Nearctic, eastern Asia, Nepal, Caucasus and Europe, and differed by 3-8.8% of sequence divergence. Differences among regions explained 96% of the sequence variation in winter wren. Differences among individuals within localities explained 3% of the sequence variation, and differences among localities within regions explained 1%. Grouping sequences into subspecies instead of localities did not change these proportions. Proliferation of the six clades coincided with Early and Middle Pleistocene glaciations. The distribution of winter wren clades can be explained by a series of five consecutive vicariant events. Western Nearctic wrens diverged from the Holarctic ancestor 1.6 Myr before the present time (MYBP). Eastern Nearctic and Palaearctic wrens diverged 1 MYBP. Eastern and western Palaearctic birds diverged 0.83 MYBP. Nepalese and east Asian wrens diverged 0.67 MYBP, and Caucasian birds diverged from European wrens 0.54 MYBP. The winter wren has a much greater degree of inter- and intracontinental differentiation than the three other Holarctic birds studied to date--dunlin (Calidris alpina), common raven (Corvus corax) and three-toed woodpecker (Picoides trydactylus)--and represents an example of cryptic speciation that has been overlooked.  相似文献   

3.
The species in the repleta group of the genus Drosophila have been placed into five subgroups-the mulleri, hydei, mercatorum, repleta, and fasciola subgroups. Each subgroup has been further subdivided into complexes and clusters. Extensive morphological and cytological analyses of the members of this species group have formed the foundation for the proposed relationships among the members of the repleta species group. Fifty-four taxa, including 46 taxa belonging to the repleta species group, were sequenced for fragments of four genes-16S ribosomal DNA (16S), cytochrome oxidase II (COII), and nitrogen dehydrogenase 1 (ND1) of the mitochondrial genome and a region of the hunchback (hb) nuclear gene. We also generated a partial data set of elongation factor 1-alpha (Ef1alpha) sequences for a subset of taxa. Our analysis used both DNA characters and chromosomal inversion data. The phylogenetic hypothesis we obtained supports many of the traditionally accepted clades within the mulleri subgroup, but the monophyly of taxonomic groups outside of this subgroup appears not to be supported. Phylogenetic analysis revealed one well-supported, highly resolved clade that consists of closely related members of the mulleri and buzzatii complexes. The remaining taxa, a wide assortment of taxonomic groups, ranging from members of other species groups to members of several subgroups and members of three species complexes from the mulleri subgroup are found in poorly supported arrangements at the base of the tree.  相似文献   

4.
The avian genus Turdus is one of the most speciose and widespread of passerine genera. We investigated phylogenetic relationships within this genus using mitochondrial DNA sequence data from the ND3, ND2 and cytochrome b genes. Our sampling of Turdus included 60 of the 65 extant species currently recognized, as well as all four species from three genera previously shown to fall inside Turdus (Platycichla, Nesocichla, and Cichlherminia). Phylogenetic trees based on maximum likelihood and maximum parsimony algorithms were congruent. Most of the Turdus taxa sampled fall into one of four clades: an African clade, a Central American-Caribbean clade, a largely South American clade, and a Eurasian clade. Still other taxa are placed either at the base of Turdus, or as links between clades. In no instance is any continent reciprocally monophyletic for the species distributed on it. A general lack of nodal support near the base of the phylogeny seems related to a rapid intercontinental establishment of the major clades within Turdus very early in the history of the genus. The monotypic genus Psophocichla is distantly related to, but clearly the sister of, Turdus rather than a constituent member of it.  相似文献   

5.
We use approximately 3100bp of mitochondrial (ND2, ND4) and nuclear (RAG1, phosducin) DNA sequence data to recover phylogenetic relationships among 14 of the 16 recognized taxa of the lizard genus Paroedura as well as two undescribed forms. These geckos are endemic to Madagascar and the Comores and are popularly kept and bred by herpetoculturalists. The closest relative of Paroedura is another Indian Ocean leaf-toed gecko, Ebenavia. Both Bayesian inference and maximum parsimony strongly support the monophyly of two major clades within Paroedura that conflict with existing species group assignments based on scale characteristics. Our well-resolved tree elucidates a biogeographic pattern in which eastern Paroedura are most basal and western and south-western species form a monophyletic group. Our data demonstrate the phylogenetic utility of phosducin, a novel marker in squamate phylogenetics, at the intrageneric level.  相似文献   

6.
It has proven remarkably difficult to obtain a well-resolved and strongly supported phylogeny for horned lizards (Phrynosoma) because of incongruence between morphological and mitochondrial DNA sequence data. We infer the phylogenetic relationships among all 17 extant Phrynosoma species using >5.1 kb of mtDNA (12S rRNA, 16S rRNA, ND1, ND2, ND4, Cyt b, and associated tRNA genes), and >2.2kb from three nuclear genes (RAG-1, BDNF, and GAPD) for most taxa. We conduct separate and combined phylogenetic analyses of these data using maximum parsimony, maximum likelihood, and Bayesian methods. The phylogenetic relationships inferred from the mtDNA data are congruent with previous mtDNA analyses based on fewer characters and provide strong support for most branches. However, we detected strong incongruence between the mtDNA and nuclear data using comparisons of branch support and Shimodaira-Hasegawa tests, with the (P. platyrhinos+P. goodei) clade identified as the primary source of this conflict. Our analysis of a P. mcalliixP. goodei hybrid suggests that this incongruence is caused by reticulation via introgressive hybridization. Our preferred phylogeny based on an analysis of the combined data (excluding the introgressed mtDNA data) provides a new framework for interpreting character evolution and biogeography within Phrynosoma. In the context of this improved phylogeny we propose a phylogenetic taxonomy highlighting four clades: (1) Tapaja, containing the viviparous short-horned lizards P. ditmarsi, P. hernandesi, P. douglasii, and P. orbiculare; (2) Anota, containing species with prominent cranial horns (P. solare, P. mcallii, and the P. coronatum group); (3) Doliosaurus, containing three species lacking antipredator blood-squirting (P. modestum, P. platyrhinos, and P. goodei); and (4) Brevicauda, containing two viviparous species with extremely short tails that lack blood-squirting (P. braconnieri and P. taurus).  相似文献   

7.
Crotalus viridis, the western rattlesnake, ranges throughout western North America and has been divided into at least eight subspecies. However, the validity of and relationships among these subspecies and the monophyly of C. viridis as a whole are questionable. We used mitochondrial DNA sequence data from the D-loop region and ND2 gene to examine the relationships among 26 populations of C. viridis and to test the monophyly of this species. These data were analyzed separately and combined using maximum-likelihood and maximum-parsimony. The C. viridis group was monophyletic in all combined analyses, consisting of two strongly divergent clades. We recommend that these clades be recognized as two distinct evolutionary species: C. viridis and C. oreganus. Crotalus viridis should be restricted to the subspecies viridis and nuntius and the remaining subspecies be assigned to the species C. oreganus. Our data do not allow strong evaluation of the validity of the subspecies. We found that the ND2 gene had greater sequence divergences among closely related individuals than the D-loop region, but this relationship reversed at higher levels of divergence. This pattern is apparently due to: (1) ND2 third positions evolving faster than the D-loop but becoming saturated at higher levels of divergence, and (2) the D-loop evolving faster than ND2 second (and possibly first) positions. Our results suggest that the ND2 gene is preferable for examining intraspecific relationships and the D-loop may better resolve relationships between species of snakes. The latter result is contrary to the common perception of the phylogenetic utility of the D-loop. Another unusual result is that the 145 bp spacer region, adjacent to the 5' end of the light strand of the D-loop, provides greater phylogenetic resolution than the 1030 bp D-loop.  相似文献   

8.
The bee-eaters (family Meropidae) comprise a group of brightly colored, but morphologically homogeneous, birds with a wide variety of life history characteristics. A phylogeny of bee-eaters was reconstructed using nuclear and mitochondrial DNA sequence data from 23 of the 25 named bee-eater species. Analysis of the combined data set provided a well-supported phylogenetic hypothesis for the family. Nyctiornis is the sister taxon to all other bee-eaters. Within the genus Merops, we recovered two well-supported clades that can be broadly separated into two groups along geographic and ecological lines, one clade with mostly African resident species and the other clade containing a mixture of African and Asian taxa that are mostly migratory species. The clade containing resident African species can be further split into two groups along ecological lines by habitat preference into lowland forest specialists and montane forest and forest edge species. Intraspecific sampling in several of the taxa revealed moderate to high (3.7-6.5%, ND2) levels of divergence in the resident taxa, whereas the lone migratory taxon showed negligible levels of intraspecific divergence. This robust molecular phylogeny provides the phylogenetic framework for future comparative tests of hypotheses about the evolution of plumage patterns, sociality, migration, and delayed breeding strategies.  相似文献   

9.
Lineages that exhibit little morphological change over time provide a unique opportunity to explore whether nonadaptive or adaptive processes explain the conservation of morphology over evolutionary time scales. We provide the most comprehensive evaluation to date of the evolutionary processes leading to morphological similarity among species in a cryptic species complex, incorporating two agamid lizard species (Diporiphora magna and D. bilineata). Phylogenetic analysis of mitochondrial (ND2) and nuclear (RAG-1) gene regions revealed the existence of eight deeply divergent clades. Analysis of morphological data confirmed the presence of cryptic species among these clades. Alternative evolutionary hypotheses for the morphological similarity of species were tested using a combination of phylogenetic, morphological, and ecological data. Likelihood model testing of morphological data suggested a history of constrained phenotypic evolution where lineages have a tendency to return to their medial state, whereas ecological data showed support for both Brownian motion and constrained evolution. Thus, there was an overriding signature of constrained evolution influencing morphological divergence between clades. Our study illustrates the utility of using a combination of phylogenetic, morphological, and ecological data to investigate evolutionary mechanisms maintaining cryptic species.  相似文献   

10.
Complete ND2 and partial ND4 and cytochrome b mitochondrial DNA (mtDNA) sequences were analysed to evaluate the phylogeographic patterns of common garter snakes (Thamnophis sirtalis) in western North America. This species is widely distributed throughout North America, and exhibits extensive phenotypic variation in the westernmost part of its range. The overall phylogeographic pattern based on mtDNA sequences is concordant with results from studies of other species in this region, implicating historical vicariant processes during the Pleistocene and indicating bottleneck effects of recent dispersal into postglacial habitat. Indeed, the topology is statistically consistent with the hypothesis of both southern (Great Basin and California) and northern (Haida Gwaii) refugia. Specifically, we identified genetic breaks among three major clades: Northwest Coastal populations, Intermountain populations, and all California populations. The California clade contained the only other well-supported branching patterns detected; relationships among populations within the two northern clades were indistinguishable. These molecular splits contrast sharply with all prior geographical analyses of phenotypic variation in T. sirtalis in this region. Our results suggest that the extensive phenotypic variation in western T. sirtalis has been shaped more by local evolutionary forces than by shared common ancestry. Consequently, we consider all morphologically based subspecies designations of T. sirtalis in this region invalid because they do not reflect reciprocal monophyly of the mtDNA sequences.  相似文献   

11.
Woodroaches of the genus Cryptocercus are subsocial and xylophagous cockroaches, distributed in North America and Asia. Studies on male chromosome number in Nearctic species have shown that diploid numbers vary from 2n=37 to 2n=47; numbers from Palearctic species were heretofore unknown. Two hypotheses have been proposed to explain the varying number of chromosomes among Nearctic species: the serial reduction hypothesis, and the parallel scenario. We performed phylogenetic analyses of the COII gene in these species and found evidence for the topology (47(45(43(39,37), which is congruent with the serial reduction hypothesis. We also determined chromosome numbers for the first time in Palearctic species, and found Cryptocercus primarius and Cryptocercus relictus to have relatively low chromosome numbers (2n=17-21) compared to their Nearctic relatives. Finally, our study determined the phylogenetic position of Cryptocercus primarius among other Asian taxa.  相似文献   

12.
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck''s lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.  相似文献   

13.
The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute separate species. Our study provides a solid basis for further systematic investigations of this enigmatic insect group.  相似文献   

14.
Oysters are among the most familiar, best studied, and morphologically variable of all marine invertebrate taxa. However, our knowledge of oyster phylogeny and systematics is rudimentary, especially for the subfamily Ostreinae (flat oysters). It is unclear, for instance, whether the predominant flat oysters occurring between latitudes 35 and 50 degrees S constitute a single circumglobal species, or multiple, phylogenetically distinct, regional taxa. We have performed the first DNA molecular phylogenetic analysis of ostreinid taxa to distinguish among competing phylogenetic and systematic hypotheses for Southern Hemisphere Ostreinae. An approximately 450-nucleotide fragment of the mitochondrial large ribosomal subunit (16S) was sequenced for 41 individual oysters, representing 14 taxa of brooding oysters: 5 Southern Hemisphere Ostreinae, 5 Northern Hemisphere Ostreinae, and 4 outgroup species of the subfamily Lophinae. Phylogenetic analyses of the resulting data set yielded consensus tree topologies that are comprehensively incongruent with prevailing morphologically based interpretations of systematic relationships among the Ostreinae. Three ostreinid mitochondrial clades were evident, each containing representatives of Southern Hemisphere regional ostreinid taxa, some of which robustly cocluster with Northern Hemisphere taxa. These three clades represent the first well-supported phylogenetic framework for this ecologically prominent and commercially important oyster subfamily.  相似文献   

15.
Data from restriction-site variation of three PCR-amplified chloroplast genic regions (trnK, rps2, and rbcL) were used to assess the utility of PCR-based methodology for phylogenetic reconstruction. Seventeen genera from tribe Cheloneae s.l. (Scrophulariaceae), and one genus each from Solanaceae, Acanthaceae, and Bignoniaceae, representing 32 taxa, were sampled. Phylogenetic reconstruction, based on a combined data set of 138 variable restriction sites, revealed a monophyletic clade of North American Cheloneae, which were not inconsistent with a polyphyletic Scrophulariaceae. Separate analyses of individual genie regions were unable to completely resolve the phylogeny, but were adequate for resolving relationships of major clades among the taxa sampled. We suggest that analysis of PCR-product restriction-site variation is useful for phylogenetic reconstruction above the species level.  相似文献   

16.
Although resolving phylogenetic relationships and establishing species limits are primary goals of systematics, these tasks remain challenging at both conceptual and analytical levels. Here, we integrated genomic and phenotypic data and employed a comprehensive suite of coalescent‐based analyses to develop and evaluate competing phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers (Chorthippus binotatus group) composed of two species and eight putative subspecies. To resolve the evolutionary relationships within this complex, we first evaluated alternative phylogenetic hypotheses arising from multiple schemes of genomic data processing and contrasted genetic‐based inferences with different sources of phenotypic information. Second, we examined the importance of number of loci, demographic priors, number and kind of phenotypic characters and sex‐based trait variation for developing alternative species delimitation hypotheses. The best‐supported topology was largely compatible with phenotypic data and showed the presence of two clades corresponding to the nominative species groups, one including three well‐resolved lineages and the other comprising a four‐lineage polytomy and a well‐differentiated sister taxon. Integrative species delimitation analyses indicated that the number of employed loci had little impact on the obtained inferences but revealed the higher power provided by an increasing number of phenotypic characters and the usefulness of assessing their phylogenetic information content and differences between sexes in among‐taxa trait variation. Overall, our study highlights the importance of integrating multiple sources of information to test competing phylogenetic hypotheses and elucidate the evolutionary history of species complexes representing early stages of divergence where conflicting inferences are more prone to appear.  相似文献   

17.
The phylogenetic relationships within many clades of the Crassulaceae are still uncertain, therefore in this study attention was focused on the “Acre clade”, a group comprised of approximately 526 species in eight genera that include many Asian and Mediterranean species of Sedum and the majority of the American genera (Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Villadia, and Thompsonella). Parsimony and Bayesian analyses were conducted with 133 species based on nuclear (ETS, ITS) and chloroplast DNA regions (rpS16, matK). Our analyses retrieved four major clades within the Acre clade. Two of these were in a grade and corresponded to Asian species of Sedum, the rest corresponded to a European–Macaronesian group and to an American group. The American group included all taxa that were formerly placed in the Echeverioideae and the majority of the American Sedoideae. Our analyses support the monophyly of three genera – Lenophyllum, Thompsonella, and Pachyphytum; however, the relationships among Echeveria, Sedum and the various segregates of Sedum are largely unresolved. Our analyses represents the first broad phylogenetic framework for Acre clade, but further studies are necessary on the groups poorly represented here, such as the European and Asian species of Sedum and the Central and South American species of Echeveria.  相似文献   

18.
We address the phylogenetic relationships of the drongos (Dicruridae) at the species-level using sequences from two nuclear (myoglobin intron-2 and c-mos) and two mitochondrial (ND2 and cytochrome b) loci. The resulting phylogenetic tree shows that the most basal species is D. aeneus, followed in the tree by a trichotomy including (1) the Asian D. remifer, (2) a clade of all African and Indian Ocean islands species as well as two Asian species (D. macrocercus and D. leucophaeus) and (3) a clade that includes all other Asian species as well as two Australasian species (D. megarhynchus and D. bracteatus). Our phylogenetic hypotheses are compared to [Mayr, E., Vaurie, C., 1948. Evolution of the family Dicruridae (Birds). Evolution 2, 238-265.] hypothetical family "tree" based on traditional phenotypic analysis and biogeography. We point out a general discrepancy between the so-called "primitive" or "unspecialized" species and their position in the phylogenetic tree, although our results for other species are congruent with previous hypotheses. We conduct dating analyses using a relaxed-clock method, and propose a chronology of clades formation. A particular attention is given to the drongo radiation in Indian Ocean islands and to the extinction-invasion processes involved. The first large diversification of the family took place both in Asia and Africa at 11.9 and 13.3Myr, respectively, followed by a dispersal event from Africa to Asia at ca 10.6Myr; dispersal over Wallace line occurred later at ca 6Myr. At 5Myr, Principe and Indian Ocean Islands have been colonized from an African ancestor; the most recent colonization event concerned Anjouan by an immigrating population from Madagascar.  相似文献   

19.
Phylogenetic relationships in Cornales were assessed using sequences rbcL and matK. Various combinations of outgroups were assessed for their suitability and the effects of long branches and outgroups on tree topology were examined using RASA 2.4 prior to conducting phylogenetic analyses. RASA identified several potentially problematic taxa having long branches in individual data sets that may have obscured phylogenetic signal, but when data sets were combined RASA no longer detected long branch problems. t(RASA) provides a more conservative measurement for phylogenetic signal than the PTP and skewness tests. The separate matK and rbcL sequence data sets were measured as not containing phylogenetic signal by RASA, but PTP and skewness tests suggested the reverse [corrected]. Nonetheless, the matK and rbcL sequence data sets suggested relationships within Cornales largely congruent with those suggested by the combined matK-rbcL sequence data set that contains significant phylogenetic signal as measured by t(RASA), PTP, and skewness tests. Our analyses also showed that a taxon having a long branch on the tree may not be identified as a "long-branched" taxon by RASA. The long branches identified by RASA had little effect on the arrangement of other taxa in the tree, but the placements of the long-branched taxa themselves were often problematic. Removing the long-branched taxa from analyses generally increased bootstrap support, often substantially. Use of non-optimal outgroups (as identified by RASA) decreased phylogenetic resolution in parsimony analyses and suggested different relationships in maximum likelihood analyses, although usually weakly supported clades (less than 50% support) were impacted. Our results do not recommend using t(RASA) as a sole criterion to discard data or taxa in phylogenetic analyses, but t(RASA) and the taxon variance ratio obtained from RASA may be useful as a guide for improved phylogenetic analyses. Results of parsimony and ML analyses of the sequence data using optimal outgroups suggested by RASA revealed four major clades within Cornales: (1) Curtisia-Grubbia, (2) Cornus-Alangium, (3) Nyssa-Camptotheca-Davidia-Mastixia-Diplopanax, and (4) Hydrangeaceae-Loasaceae, with clades (2) and (3) forming a monophyletic group sister to clade (4) and clade (1) sister to the remainder of Cornales. However, there was not strong bootstrap support for relationships among the major clades. The placement of Hydrostachys could not be reliably determined, although most analyses place the genus within Hydrangeaceae; ML analyses, for example, placed the genus as the sister of Hydrangeeae. Our results supported a Cornales including the systematically problematic Hydrostachys, a Cornaceae consisting of Cornus and Alangium, a Nyssaceae consisting of Nyssa and Camptotheca, a monogeneric Davidiaceae, a Mastixiaceae consisting of Mastixia and Diplopanax, and an expanded Grubbiaceae consisting of Grubbia and Curtisia, and two larger families, Hydrangeaceae and Loasaceae.  相似文献   

20.
In this study, two mitochondrial genes, cyt b and ND5, and the D2 expansion segment of the 28S nuclear ribosomal gene were used to reconstruct a phylogeny of the mosquito subfamily Anophelinae. The ingroup consisted of all three genera of Anophelinae and five of six subgenera of Anopheles. Six genera of Culicinae were used as the outgroup. Extreme conservation at the protein level coupled with rapid saturation of synonymous positions probably accounted for the lack of meaningful phylogenetic signal in the cyt b gene. In contrast, abundant variation at all codon positions of the ND5 gene allowed recovery of the basal and most of the recent relationships. Phylogenetic analysis of D2 produced results consistent with those of ND5. Combined analysis indicated well-supported monophyletic Anophelinae (with Chagasia basal), Anopheles + Bironella, and subgeneric clades within the genus Anopheles. Moreover, subgenera Nyssorhynchus and Kerteszia were supported as a monophyletic lineage. The Kishino-Hasegawa test could not reject the monophyly of Anopheles, whereas the recently proposed hypothesis of close affinity of Bironella to the subgenus Anopheles was rejected by the analyses of ND5 and combined data sets. The lack of resolution of Bironella and Anopheles clades, or basal relationships among subgeneric clades within Anopheles, suggests their rapid diversification. Recovery of relationships consistent with morphology and previous molecular studies provides evidence of substantial phylogenetic signal in D2 and ND5 genes at levels of divergence from closely related species to subfamily in mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号