首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition and structure of the mouse hepatitis virus (MHV)-specific RNA in actinomycin D-treated, infected L-2 cells were studied. SEven virus-specific RNA species with molecular weights of 0.6 X 10(6), 0.9 X 10(6), 1.2 X 10(6), 1.5 X 10(6), 3.0 X 10(6), 4.0 X 10(6), and 5.4 X 10(6) (equivalent to the viral genome) were detected. T1 oligonucleotide fingerprinting studies suggested that the sequences of each RNA species were totally included within the next large RNa species. The oligonucleotides of each RNA species were mapped on the 60S RNA genome of the virus. Each RNA species contained the oligonucleotides starting from the 3' end of the genome and extending continuously for various lengths in the 3' leads to 5' direction. All of the viral RNA species contained a polyadenylate stretch of 100 to 130 nucleotides and probably identical sequences immediately next to the polyadenylate. These data suggested that the virus-specific RNAs are mRNA's and have a stairlike structure similar to that of infectious bronchitis virus, an avian coronavirus. A proposal is presented, based on the mRNA structure, for the designation of the genes on the MHV genome. Using this proposal, the sequence differences between A59, a weakly pathogenic strain, and MHV-3, a strongly hepatotropic strain, were localized primarily in mRNA's 1 and 3, corresponding t genes A and C.  相似文献   

2.
3.
Long-range RNA-RNA interactions circularize the dengue virus genome   总被引:6,自引:0,他引:6       下载免费PDF全文
Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5' and 3' ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy revealed that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5' and 3' CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5' and 3' untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5' and 3' UAR (upstream AUG region). In order to investigate the functional role of 5'-3' UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5' or 3' UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication.  相似文献   

4.
5.
The NS5B protein of the classical swine fever virus (CSFV) is the RNA-dependent RNA polymerase of the virus and is able to catalyze the viral genome replication. The 3' untranslated region is most likely involved in regulation of the Pestivirus genome replication. However, little is known about the interaction between the CSFV NS5B protein and the viral genome. We used different RNA templates derived from the plus-strand viral genome, or the minus-strand viral genome and the CSFV NS5B protein obtained from the Escherichia coli expression system to address this problem. We first showed that the viral NS5B protein formed a complex with the plus-strand genome through the genomic 3' UTR and that the NS5B protein was also able to bind the minus-strand 3' UTR. Moreover, it was found that viral NS5B protein bound the minus-strand 3' UTR more efficiently than the plus-strand 3' UTR. Further, we observed that the plus-strand 3' UTR with deletion of CCCGG or 21 continuous nucleotides at its 3' terminal had no binding activity and also lost the activity for initiation of minus-strand RNA synthesis, which similarly occurred in the minus-strand 3' UTR with CATATGCTC or the 21 nucleotide fragment deleted from the 3' terminal. Therefore, it is indicated that the 3' CCCGG sequence of the plus-strand 3' UTR, and the 3' CATATGCTC fragment of the minus-strand are essential to in vitro synthesis of the minus-strand RNA and the plus-strand RNA, respectively. The same conclusion is also appropriate for the 3' 21 nucleotide terminal site of both the 3' UTRs.  相似文献   

6.
Bovine viral diarrhea virus (BVDV), a Pestivirus member of the Flaviviridae family, has a positive-stranded RNA genome which consists of a single open reading frame (ORF) and untranslated regions (UTRs) at the 5' and 3' ends. The 5' UTR harbors extensive RNA structure motifs; most of them were shown to contribute to an internal ribosomal entry site (IRES), which mediates cap-independent translation of the ORF. The extreme 5'-terminal region of the BVDV genome had so far been believed not to be required for IRES function. By structure probing techniques, we initially verified the existence of a computer-predicted stem-loop motif at the 5' end of the viral genome (hairpin Ia) as well as at the 3' end of the complementary negative-strand replication intermediate [termed hairpin Ia (-)]. While the stem of this structure is mainly constituted of nucleotides that are conserved among pestiviruses, the loop region is predominantly composed of variable residues. Taking a reverse genetics approach to a subgenomic BVDV replicon RNA (DI9c) which could be equally employed in a translation as well as replication assay system based on BHK-21 cells, we obtained the following results. (i) Proper folding of the Ia stem was found to be crucial for efficient translation. Thus, in the context of an authentic replication-competent viral RNA, the 5'-terminal motif operates apparently as an integral functional part of the ribosome entry. (ii) An intact loop structure and a stretch of nucleotide residues that constitute a portion of the stem of the Ia or the Ia (-) motif, respectively, were defined to represent important determinants of the RNA replication pathway. (iii) Formation of the stem structure of the Ia (-) motif was determined to be not critical for RNA replication. In summary, our findings affirmed that the 5'-terminal region of the BVDV genome encodes a bifunctional secondary structure motif which may enable the viral RNA to switch from the translation to the replicative cycle and vice versa.  相似文献   

7.
8.
9.
10.
Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3' end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3'-UTR, we found that the RNA-RNA interaction mediated by 5'-3'-hybridization was able to release the silencing effect of the 3'-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.  相似文献   

11.
12.
13.
14.
In the life cycle of plus-strand RNA viruses, the genome initially serves as the template for both translation of the viral replicase gene and synthesis of minus-strand RNA and is ultimately packaged into progeny virions. These various processes must be properly balanced to ensure efficient viral proliferation. To achieve this, higher-order RNA structures near the termini of a variety of RNA virus genomes are thought to play a key role in regulating the specificity and efficiency of viral RNA synthesis. In this study, we have analyzed the signals for minus-strand RNA synthesis in the prototype of the arterivirus family, equine arteritis virus (EAV). Using site-directed mutagenesis and an EAV reverse genetics system, we have demonstrated that a stem-loop structure near the 3' terminus of the EAV genome is required for RNA synthesis. We have also obtained evidence for an essential pseudoknot interaction between the loop region of this stem-loop structure and an upstream hairpin residing in the gene encoding the nucleocapsid protein. We propose that the formation of this pseudoknot interaction may constitute a molecular switch that could regulate the specificity or timing of viral RNA synthesis. This hypothesis is supported by the fact that phylogenetic analysis predicted the formation of similar pseudoknot interactions near the 3' end of all known arterivirus genomes, suggesting that this interaction has been conserved in evolution.  相似文献   

15.
16.
Cells producing avian sarcoma virus (ASV) contain at least three virus-specific mRNAs, two of which are encoded within the 3' half of the viral genome. Each of these viral RNAs can hybridize with single-stranded DNA(cDNA5') that is complementary to a sequence of 101 nucleotides found at the 5' terminus of the ASV genome, but not within the 3' half of the genome. We proposed previously (Weiss, Varmus and Bishop, 1977) that this nucleotide sequence may be transposed to the 5' termini of viral mRNAs during the genesis of these RNAs. We now substantiate this proposal by reporting the isolation and chemical characterization of the nucleotide sequences complementary to cDNA5' in the genome and mRNAs of the Prague B strain of ASV. We isolated the three identified classes of ASVmRNA (38, 28 and 21S) by molecular hybridization; each class of RNA contained a "capped" oligonucleotide identical to that found at the 5' terminus of the ASV genome. When hybridized with cDNA5', each class of RNA gave rise to RNAase-resistant duplex hybrids that probably encompassed the full extent of cDNA5'. The molar yields of duplex conformed approximately to the number of virus-specific RNA molecules in the initial samples; hence most if not all of the molecules of virus-specific RNA could give rise to the duplexes. The duplexes prepared from the various RNAs all contained the capped oligonucleotide found at the 5' terminus of the viral genome and had identical "fingerprints" when analyzed by two-dimensional fractionation following hydrolysis with RNAase T1. In contrast, RNA representing the 3' half of the ASV genome did not form hybrids with cDNA5'. We conclude that a sequence of more than 100 nucleotides is transposed from the 5' end of the ASV genome to the 5' termini of smaller viral RNAs during the genesis of these RNAs. Transposition of nucleotide sequences during the production of mRNA has now been described for three families of animal viruses and may be a common feature of mRNA biogenesis in eucaryotic cells. The mechanism of transposition, however, and the function of the transposed sequences are not known.  相似文献   

17.
From analysis of the large RNase T1-resistant oligonucleotides of Kirsten sarcoma virus (Ki-SV), a physical map of the virus genome was deduced. Kirsten murine leukemia virus (Ki-MuLV) sequences were detected in T1 oligonucleotides closest to the 3' end of the viral RNA and extended approximately 1,000 nucleotides into the genome. The rat genetic sequences started at this point and extended all the way to the very 5' end of the RNA molecules, where a small stretch of Ki-MuLV sequence was detected. By comparison of the fingerprints of Ki-SV RNA and the RNA of the endogenous rat src genetic sequences, it was found that more than 50% of the T1 oligonucleotides were similar between Ki-SV and the endogenous rat src RNA, suggesting an identical primary nucleotide sequence in over 50% of the viral genomes. The results indicate that Ki-SV arose by recombination between the 5' and 3' ends of Ki-MuLV and a large portion of the homologous sequences of the endogenous rat src RNA.  相似文献   

18.
19.
20.
The 3' nontranslated region (NTR) of the hepatitis C virus (HCV) genome is highly conserved and contains specific cis-acting RNA motifs that are essential in directing the viral replication machinery to initiate at the correct 3' end of the viral genome. Since the ends of viral genomes may be damaged by cellular RNases, preventing the initiation of viral RNA replication, stable RNA hairpin structures in the 3' NTR may also be essential in host defense against exoribonucleases. During 3'-terminal sequence analysis of serum samples of a patient with chronic hepatitis related to an HCV1b infection, a number of clones were obtained that were several nucleotides shorter at the extreme 3' end of the genome. These shorter 3' ends were engineered in selectable HCV replicons in order to enable the study of RNA replication in cell culture. When in vitro-transcribed subgenomic RNAs, containing shorter 3' ends, were introduced into Huh-7 cells, a few selectable colonies were obtained, and the 3' terminus of these subgenomic RNAs was sequenced. Interestingly, most genomes recovered from these colonies had regained the wild-type 3' ends, showing that HCV, like several other positive-stranded RNA viruses, has developed a strategy to repair deleted 3' end nucleotides. Furthermore, we found several genomes in these replicon colonies that contained a poly(A) tail and a short linker sequence preceding the poly(A) tail. After recloning and subsequent passage in Huh-7 cells, these poly(A) tails persisted and varied in length. In addition, the connecting linker became highly diverse in sequence and length, suggesting that these tails are actively replicated. The possible terminal repair mechanisms, including roles for the poly(A) tail addition, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号