首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Stabilization of chromatin structure by PRC1, a Polycomb complex.   总被引:44,自引:0,他引:44  
The Polycomb group (PcG) genes are required for maintenance of homeotic gene repression during development. Mutations in these genes can be suppressed by mutations in genes of the SWI/SNF family. We have purified a complex, termed PRC1 (Polycomb repressive complex 1), that contains the products of the PcG genes Polycomb, Posterior sex combs, polyhomeotic, Sex combs on midleg, and several other proteins. Preincubation of PRC1 with nucleosomal arrays blocked the ability of these arrays to be remodeled by SWI/SNF. Addition of PRC1 to arrays at the same time as SWI/SNF did not block remodeling. Thus, PRC1 and SWI/SNF might compete with each other for the nucleosomal template. Several different types of repressive complexes, including deacetylases, interact with histone tails. In contrast, PRC1 was active on nucleosomal arrays formed with tailless histones.  相似文献   

11.
哺乳动物SWI/SNF复合物是一种ATP依赖的染色质重塑复合物, 在细胞增殖、分化、发育和肿瘤抑制过程中发挥着重要作用。ARID1A是一种SWI/SNF复合物亚基, 此外还是一种ARID家族成员, 具有非序列特异性DNA结合活性。ARID1A发挥着肿瘤抑制作用, 在多种肿瘤如卵巢癌、膀胱癌和胃癌等存在频繁基因突变。ARID1A可通过上调p21和下调E2F-反应基因表达而抑制细胞增殖。ARID1A与肿瘤抑制作用的发现对癌症发生的理解和癌症新治疗有重要裨益。文章介绍了ARID1A的基本特征、肿瘤发生的关联及生物学作用, 以期对ARID1A有一个全面理解。  相似文献   

12.
13.
Unfolding of the gene expression program that converts precursor cells to their terminally differentiated counterparts is critically dependent on the nucleosome-remodeling activity of the mammalian SWI/SNF complex. The complex can be powered by either of two alternative ATPases, BRM or BRG1. BRG1 is critical for development and the activation of tissue specific genes and is found in two major stable configurations. The complex of BRG1-associated factors termed BAF is the originally characterized form of mammalian SWI/SNF. A more recently recognized configuration shares many of the same subunits but is termed PBAF in recognition of a unique subunit, the polybromo protein (PBRM1). Two other unique subunits, BRD7 and ARID2, are also diagnostic of PBAF. PBAF plays an essential role in development, apparent from the embryonic lethality of Pbmr1-null mice, but very little is known about the role of PBAF, or its signature subunits, in tissue-specific gene expression in individual differentiation programs. Osteoblast differentiation is an attractive model for tissue-specific gene expression because the process is highly regulated and remains tightly synchronized over a period of several weeks. This model was used here, with a stable shRNA-mediated depletion approach, to examine the role of the signature PBAF subunit, ARID2, during differentiation. This analysis identifies a critical role for ARID2-containing complexes in promoting osteoblast differentiation and supports a view that the PBAF subset of SWI/SNF contributes importantly to maintaining cellular identity and activating tissue-specific gene expression.  相似文献   

14.
15.
16.
The SWI/SNF and SAGA chromatin-modifying complexes contain bromodomains that help anchor these complexes to acetylated promoter nucleosomes. To study the importance of bromodomains in these complexes, we have compared the chromatin-remodeling and octamer-transfer activity of the SWI/SNF complex to a mutant complex that lacks the Swi2/Snf2 bromodomain. Here we show that the SWI/SNF complex can remodel or transfer SAGA-acetylated nucleosomes more efficiently than the Swi2/Snf2 bromodomain-deleted complex. These results demonstrate that the Swi2/Snf2 bromodomain is important for the remodeling as well as for the octamer-transfer activity of the complex on H3-acetylated nucleosomes. Moreover, we show that, although the wild-type SWI/SNF complex displaces SAGA that is bound to acetylated nucleosomes, the bromodomain mutant SWI/SNF complex is less efficient in SAGA displacement. Thus, the Swi2/Snf2 bromodomain is required for the full functional activity of SWI/SNF on acetylated nucleosomes and is important for the displacement of SAGA from acetylated promoter nucleosomes.  相似文献   

17.
18.
19.
Zhou C  Miki B  Wu K 《Plant molecular biology》2003,52(6):1125-1134
The SWI/SNF complex is an ATP-dependent chromatin remodeling complex that plays an important role in the regulation of eukaryotic gene expression. Very little is known about the function of SWI/SNF complex in plants compared with animals and yeast. SWI3 is one of the core components of the SWI/SNF chromatin remodeling complexes in yeast. We have identified a putative SWI3-like cDNA clone, CHB2 (AtSWI3B), from Arabidopsis thaliana by screening the expressed sequence tag database. CHB2 encodes a putative protein of 469 amino acids and shares 23% amino acid sequence identity and 64% similarity with the yeast SWI3. The Arabidopsis genome contains four SWI3-like genes, namely CHB1 (AtSWI3A), CHB2 (AtSWI3B), CHB3 (AtSWI3C) and CHB4 (AtSWI3D). The expression of CHB2, CHB3 and CHB4 mRNA was detected in all tissues analyzed by RT-PCR. The expression of CHB1 mRNA, however, could not be detected in the siliques, suggesting that there is differential expression among CHB genes in different Arabidopsis tissues. To investigate the role of CHB2 in plants, Arabidopsis plants were transformed with a gene construct comprising a CHB2 cDNA in the antisense orientation driven by the CaMV 35S promoter. Repression of CHB2 expression resulted in pleiotropic developmental abnormalities including abnormal seedling and leaf phenotypes, dwarfism, delayed flowering and no apical dominance, suggesting a global role for CHB2 in the regulation of gene expression. Our results indicate that CHB2 plays an essential role in plant growth and development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号