首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth. External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.  相似文献   

2.
The accumulation and storage of nitrogen by herbaceous plants   总被引:18,自引:5,他引:13  
Abstract Accumulation of nitrogen (N) by plants in response to N supply outstripping demand is contrasted with storage of N, which implies that N in one tissue can be reused for the growth or maintenance of another. Storage can, therefore, occur in N-deficient plants; accumulation can not. The consequence of accumulation and storage of N is considered, particularly in relation to the reproductive growth of annual plants, which can often use a great deal of stored N. Nitrate and proteins are the forms of N most often stored in vegetative tissues and, quantitatively, ribulose 1,5-bisphosphate carboxylase/oxygenase is often the most important protein store. While storing nitrate will be less costly to the plant in terms of energy, protein stores offer several possible advantages. These advantages are (i) maximizing the potential for carbon assimilation, (ii) avoiding problems with the regulation of leaf turgor and (iii) allowing the reduction on nitrate to occur in the young, fully illuminated leaf.  相似文献   

3.
Summary Studies were conducted to examine the importance of nitrogen storage to seasonal aboveground growth in the alpine herb Bistorta bistortoides. Stored reserves accounted for 60% of the total nitrogen allocated to the shoot during the growing season. The stored nitrogen was equally partitioned between preformed buds of the shoot and the roots/rhizome. Reliance on stored N was similar in populations of a 105-day growing season site and of a 75-day growing season site. Contrary to our initial hypothesis, stored nitrogen reserves were not used to extend the growing season of this species into the late-spring when soils are still cold, and saturated with snow-melt water. The time at which stored nitrogen was used to initiate shoot growth coincided with the time of root initiation, rapid soil warming, and near maximum soil concentrations of NO inf3 sup– and NH inf4 sup+ . Thus, nitrogen demand and soil nitrogen supply were both high at the same time. The importance of nitrogen storage in this species appeared to be in satisfying the high demand of simultaneous vegetative and reproductive growth during the early-growing season after soils thawed. The initiation of rapid leaf and inflorescence growth occurred in mid-June in both sites. The maximum pool size of shoot nitrogen (maximum nitrogen demand) occurred only 12 days later in the long season site, and 28 days later in the short season site. The early-season utilization of nitrogen stores allows plants of this species to initiate reproductive allocation at the same time vegetative tissues are exhibiting maximal growth rates. By releasing vegetative and reproductive growth from competition for nitrogen, seeds could mature early in the alpine growing season, before the frost probability sharply increases in mid-August.  相似文献   

4.
Abstract Small birch plants (Betula pendula Roth) were grown in a climate chamber at different levels of nutrient availability and at two photon flux densities. The extent to which starch storage was dependent upon nutrient availability and photon flux density was investigated. Acclimated values of starch concentration in leaves were highest at low nutrient availability and high photon flux density. Starch storage in roots was only found at the lowest nutrient availability. However, the relative rate of starch storage (starch stored per unit plant dry weight and time) was higher in plants with good nutrition. The data suggest that, at sub-optimal nutrient availability, the momentary rate of net shoot photosynthesis is unlikely to limit the structural (as opposed to carbon storage) growth of the plant. Although photosynthetic rate per unit leaf area (as measured at the growth climate) was slightly lower in plants with poor nutrient availability, photosynthetic rate per unit leaf nitrogen was higher. These data suggest a priority of leaf nitrogen usage in photosynthesis, with limiting amounts of leaf nitrogen (and possibly other nutrients) for subsequent growth processes. This argument is consistent with the higher concentrations of starch found in plants with poor nutrient availability.  相似文献   

5.
The building and use of internal N stores in the grass Calamagrostis epigejos was investigated in context of complex ecological study focused on mechanisms underlying competitive ability of this highly successful invasive species. Induced changes in nitrogen availability in the course of two subsequent vegetation seasons were used as a tool for finding (i) to what extent high N availability in substrate is important for building N reserves in autumn that support spring regrowth and, (ii) if contrasting contents of N storage compounds may result in differences in growth in the next season. Plants were grown in solely inorganic substrate and received a nutrient solution containing 5 mol m−3 of NH4NO3. The nitrogen supply was reduced in a low nitrogen (LN) treatment to 0.25 mol m−3 in August whereas in high nitrogen (HN) treatment remained high till December. During the following growing season were plants from both treatments grown at the low N supply (0.25 mol m−3). An increase in the content of N storage compounds was observed from September to December in both treatments. Plants in the LN treatment showed significantly lower total N content and also N allocated to mobilizable reserves (20–50% of HN plants), namely due to a smaller accumulation of amino acids and soluble protein in autumn. External nitrogen availability in autumn is hence highly important for building N reserves in this species. A major portion of the nitrogen stored in HN plants during winter was taken up from growth medium in late autumn, whereas translocation from senescing shoots dominated in LN treatment. During the winter about 50% of N in plants was permanently present in shoots bearing several frost resistant green leaves. Spring regrowth was accompanied by a fast decrease of both total N and the content of N storage compounds in both treatments. Amino acids were identified as the most prominent source of mobilizable N during spring regrowth. Development of leaf area in LN plants was significantly slower in March and April than in HN plants namely due to smaller number of tillers and green leaves per plant. Low N availability in autumn, therefore, may result in restrictions of plant growth and development in the following season.  相似文献   

6.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

7.
Nitrogen and carbon storage in alpine plants   总被引:1,自引:0,他引:1  
Alpine plants offer unique opportunities to study the processesand economics of nutrient storage. The short alpine growingseason forces rapid completion of plant growth cycles, whichin turn causes competition between vegetative and reproductivegrowth sinks during the early part of the growing season. Mobilizationof stored nitrogen and carbon reserves facilitates competingsinks and permits successful completion of reproduction beforethe onset of winter stress. We discuss the theoretical frameworkfor assessing the costs and benefits of nutrient storage inalpine plants in order to lay the foundation for interpretationof observations. A principal point that has emerged from pasttheoretical treatments is the distinction between reserve storage,defined as storage that occurs with a cost to growth, and resourceaccumulation, defined as storage that occurs when resource supplyexceeds demand, and thus when there is no cost to growth. Wethen discuss two case studies, one already published and onenot yet published, pertaining to the storage and utilizationof nitrogen and carbon compounds in alpine plants from NiwotRidge, Colorado. In the first case, we tested the hypothesisthat the seasonal accumulation of amino acids in the rhizomeof N-fertilized plants of Bistorta bistortoides provides anadvantage to the plant by not imposing a cost to growth at thetime of accumulation, but providing a benefit to growth whenthe accumulated N is remobilized. We show that, as predicted,there is no cost during N accumulation but, not as predicted,there is no benefit to future growth. In the presence of N accumulation,reliance on stored N for growth increases, but reliance on current-season,soil-derived N decreases; thus the utilization of availableN in this species is a ‘zero sum’ process. Inherentmeristematic constraints to growth cause negative feedback thatlimits the utilization of accumulated N and precludes long-termadvantages to this form of storage. In the second case study,we discuss new results showing high concentrations of cyclicpolyol (cyclitol) compounds in the leaves of many alpine speciesdominant in the dry fellfield habitat. In Artemisia scopulorum,cyclitols were induced as the growing season progressed, andreached highest concentrations during the dry, late-summer months.Leaf cyclitol concentrations were high in all four species ofthe Caryophyllaceae that we examined and appeared to be constitutivecomponents of the leaf carbohydrate pool as concentrations werehigh through the entire growing season. We observed correlationsamong seedling abundance, seeding survivorship and the presenceof high leaf cyclitol concentrations. We propose that the primaryfunction of cyclitols in the leaves of alpine, fellfield herbsis to promote drought tolerance through osmotic protection,and enhance fitness by improving seedling survival. We consideredthe possibility that cyclitols also function as carbon storagecompounds that are remobilized at the end of the growing seasonand used to support growth the following year. Our observationsdo not support this hypothesis in the Caryophyllaceae becausethe requirement for high constitutive concentrations year-after-yearprevents long-term advantages of storage and remobilization.However, in A. scopulorum, remobilization of cyclitols followingthe end of the growing season may provide storage substratesthat can be used for growth the following season. From our analysiswe conclude that it is difficult to use current theory thatis embedded in the economic concept of costs and benefits tointerpret observed dynamics in nitrogen and carbon allocation.Future theoretical developments that move away from an abstractfoundation embedded in cost-benefit tradeoffs and toward phenotypicintegration of source-sink relationships will improve our abilityto merge observations and theory.  相似文献   

8.
The root system of plants is subject to fast cycles of renewal and decay within the growing season. In water and/or nutrient stress conditions, this turnover may become strategic for plant survival and productivity, but knowledge about its mechanisms is still insufficient. In order to investigate the effects of nitrogen fertilization on growth and turnover of sugar beet roots, an experiment was carried out over two growing seasons in northern Italy with two levels of N supply (0, 100 kg ha–1). Biomass production and partitioning were followed during growth, and fibrous root dynamics were inspected by means of computer-aided procedures applied to minirhizotron images.In conditions of N shortage, lower yields (storage roots) were associated with greater allocation of biomass to tap roots (final tap-root/shoot ratio = 5.6 vs. 4.1) and shallower distribution of fibrous root length density. The maximum depth of roots was not affected by N, but unfertilized plants reached it more slowly.The ratio of cumulative root dead length to produced length at the end of the growing period (TDL max/TPL max) was used as the most suitable approach for assessing overall root turnover. This ratio was greater in controls (0.73 vs. 0.50), which showed lower root longevity (–34% life-span on average), indicating that a greater proportion of root growth was renewed by unfertilized plants over the season.  相似文献   

9.
Oilseed rape (Brassica napus L.) is commonly grown for oil or bio-fuel production, while the seed residues can be used for animal feed. It can also be grown as a catch crop because of its efficiency in extracting mineral N from the soil profile. However, the N harvest index is usually low, due in part to a low ability to remobilize N from leaves and to the fall of N-rich leaves which allows a significant amount of N to return to the environment. In order to understand how N filling of pods occurs, experiments were undertaken to quantify N flows within the plant by (15)N labelling and to follow the changes in soluble protein profiles of tissues presumed to store and subsequently to remobilize N. Whereas N uptake increased as a function of growth, N uptake capacity decreased at flowering to a non-significant level during pod filling. However, large amounts of endogenous N were transferred from the leaves to the stems and to taproots which acted as a buffering storage compartment later used to supply the reproductive tissue. About 15% of the total N cycling through the plant were lost through leaf fall and 48%, nearly all of which had been remobilized from vegetative tissues, were finally recovered in the mature pods. SDS-PAGE analysis revealed that large amounts of a 23 kDa polypeptide accumulated in the taproots during flowering and was later fully hydrolysed. Its putative function of storage protein is further supported by the fact that when plants were grown at lower temperature, both flowering, its accumulation and further mobilization were delayed. The overall results are discussed in relation to plant strategies which optimize N cycling to reproductive sinks by means of buffering vegetative tissues such as stems and taproots.  相似文献   

10.
Grain yield per plant (GYP) and mean kernel weight (KW) of maize (Zea mays L.) are sensitive to changes in the environment during the lag phase of kernel growth (the time after pollination in which the potential kernel size is determined), and during the phase of linear kernel growth. The aim of this study was to assess genotypic differences in the response to environmental stresses associated with N and/or carbohydrate shortage at different phases during plant development. The rate and timing of N and carbohydrate supply were modified by application of fertilizer, shading, and varying the plant density at sowing, at silking or at 14 d after silking. The effects of these treatments on the photosynthetic capacity, grain yield and mean kernel weight were investigated in two hybrids differing in N use efficiency. The total above-ground biomass and grain yield per plant of the efficient hybrid responded little to altered environmental conditions such as suboptimal N supply, enhanced inter-plant competition, and shading for 14 d during flowering, when compared to the less efficient genotype. We conclude that grain yields in the efficient genotype are less sensitive not only to N stress, but also to carbohydrate shortage before grain filling. Shading of N deficient plants from 14 d after silking to maturity did not significantly reduce grain yield in the non-efficient genotype, indicating complete sink limitation of grain yield during grain filling. In the efficient genotype, in contrast, grain yield of N-deficient plants was significantly reduced by shading during grain filling. The rate of photosynthesis declined with decreasing foliar N content. No genotypic differences in photosynthesis were observed at high or low foliar N contents. However, at high plant density and low N supply, the leaf chlorophyll content after flowering in the efficient genotype was higher than that in the non-efficient genotype. Obviously, the higher source capacity of the efficient genotype was not due to higher photosynthetic N use efficiency but due to maintenance of high chlorophyll contents under stressful conditions. In the efficient genotype, the harvest index was not significantly affected by N fertilization, plant density, or shading before the grain filling period. In contrast, in the non-efficient genotype the harvest index was diminished by N deficiency and shading during flowering. We conclude that the high yielding ability of the efficient genotype under stressful conditions was associated with formation of a high sink capacity of the grains under conditions of low carbohydrate and N availability during flowering and with maintenance of high source strength during grain filling under conditions of high plant density and low N availability.  相似文献   

11.
We have investigated the interactions between resource assimilation and storage in rosette leaves, and their impact on the growth and reproduction of the annual species Arabidopsis thaliana. The resource balance was experimentally perturbed by changing (i) the external nutrition, by varying the nitrogen supply; (ii) the assimilation and reallocation of resources from rosette leaves to reproductive organs, by cutting or covering rosette leaves at the time of early flower bud formation, and (iii) the internal carbon and nitrogen balance of the plants, by using isogenic mutants either lacking starch formation (PGM mutant) or with reduced nitrate uptake (NU mutant). When plants were grown on high nitrogen, they had higher concentrations of carbohydrates and nitrate in their leaves during the rosette phase than during flowering. However, these storage pools did not significantly contribute to the bulk flow of resources to seeds. The pool size of stored resources in rosette leaves at the onset of seed filling was very low compared to the total amount of carbon and nitrogen needed for seed formation. Instead, the rosette leaves had an important function in the continued assimilation of resources during seed ripening, as shown by the low seed yield of plants whose leaves were covered or cut off. When a key resource became limiting, such as nitrogen in the NU mutants and in plants grown on a low nitrogen supply, stored resources in the rosette leaves (e.g. nitrogen) were remobilized, and made a larger contribution to seed biomass. A change in nutrition resulted in a complete reversal of the plant response: plants shifted from high to low nutrition exhibited a seed yield similar to that of plants grown continuously on a low nitrogen supply, and vice versa. This demonstrates that resource assimilation during the reproductive phase determines seed production. The PGM mutant had a reduced growth rate and a smaller biomass during the rosette phase as a result of changes in respiration caused by a high turnover of soluble sugars ( Caspar et al. 1986 ; W. Schulze et al. 1991 ). During flowering, however, the vegetative growth rate in the PGM mutant increased, and exceeded that of the wild-type. By the end of the flowering stage, the biomass of the PGM mutant did not differ from that of the wild-type. However, in contrast to the wild-type, the PGM mutant maintained a high vegetative growth rate during seed formation, but had a low rate of seed production. These differences in allocation in the PGM mutant result in a significantly lower seed yield in the starchless mutants. This indicates that starch formation is not only an important factor during growth in the rosette phase, but is also important for whole plant allocation during seed formation. The NU mutant resembled the wild-type grown on a low nitrogen supply, except that it unexpectedly showed symptoms of carbohydrate shortage as well as nitrogen deficiency. In all genotypes and treatments, there was a striking correlation between the concentrations of nitrate and organic nitrogen and shoot growth on the one hand, and sucrose concentration and root growth on the other. In addition, nitrate reductase activity (NRA) was correlated with the total carbohydrate concentration: low carbohydrate levels in starchless mutants led to low NRA even at high nitrate supply. Thus the concentrations of stored carbohydrates and nitrate are directly or indirectly involved in regulating allocation.  相似文献   

12.
We examined whether nitrogen (N) and carbohydrates reserves allow Veratrum album, an alpine forb, to start spring growth earlier than the neighbouring vegetation and to survive unpredictable disturbances resulting in loss of above-ground biomass. * Seasonal dynamics of plant reserves, soil N availability and vegetation growth were monitored. Veratrum album shoots were experimentally removed when carbohydrate reserves were at a seasonal minimum and the subsequent changes in biomass and reserves were compared with those in control plants. Reserves did not give V. album a competitive advantage in spring; however, they did function as a buffer against the impact of calamities. Shoot removal resulted in significantly lower root dry weight, higher N concentration in rhizome and roots and lower starch concentrations in rhizome and roots but no plant mortality was observed. Veratrum album used stored N reserves to supplement N uptake and establish high leaf N concentrations, which facilitated a rapid refilling of depleted carbohydrate reserves. The primary function of N reserves appears to be to allow V. album to complete the growing cycle in as short a period as possible, thus minimizing exposure to above-ground risks.  相似文献   

13.
高寒草甸生态系统氮素循环   总被引:36,自引:2,他引:34  
张金霞  曹广民 《生态学报》1999,19(4):509-513
应用分室模型,研究了高寒草甸(矮嵩草草甸)生态系统中氮素的分布与循环。结果表明:系统中,土壤库氮素总储量为 1063t/hm 2,主要以有机态存在,土壤氮素全量养分丰富,而有效养分贫乏,仅能满足较低水平生产的供求关系;植物氮素主要储存于植物活根中,根系氮素储量为 19011±4962kg/hm 2·a,活根内氮素占 7926% 。通过对该系统氮素收支平衡计算结果表明,氮素输出为 15935kg/hm 2·a,大于系统的输入 8473kg/hm 2·a,系统中氮素亏缺,成为限制草场生产力提高的限制因子。  相似文献   

14.
Nitrogen accumulation in the ear of wheat plants ( Triticum aestivum L. cv. Klein Chamaco) during ear growth was studied under 4 experimental conditions. Plants were grown in pots with Perlite or soil, and fertilized with nutrient solutions. In one experiment the plants were grown in a greenhouse and supplied with high (16m M ) or low (1.6 m M ) N in the nutrient solutions until anthesis, and then with or without nitrogen supply until ripening. In a second experiment the plants were grown with high N supply until anthesis, and then for half of the plants light intensity was decreased by 50%, and at the same time. N supply was terminated for half of the plants within each light treatment. A third experiment was similar to the previous one, but was carried out in a growth cabinet under 20% of the maximal irradiance in the greenhouse. In a fourth experiment half the ear was excised at anthesis in half of the plants, and these plants were then supplied with or without nitrogen.
In all experiments there was a linear relation between the rate of N accumulation and the rate of ear growth. A wide range of final individual grain weights and N concentration was observed among the experiments. The same maximum N concentration was observed for all grain sizes, although the N concentration could be different between grains of the same size. The grain N concentration correlated with the rate of N accumulation per unit of ear weight increase during ear growth. It is suggested that in wheat plants there is a dependence of nitrogen transport on carbon transport to the ear, and to the ear, and that the final grain N concentration is determined by the N/C ratio exported from the vegetative tissues.  相似文献   

15.
American sycamore ( Platanus occidentalis L.) seedlings were grown in the field under different urea-nitrogen fertilization regimes to identify physiological variables that characterize the growth response. Treatments included fertilization at the beginning of the growing season with 50, 150, 450 kg N ha−1, fertilization 3 times each at 37.5 kg N ha−1 and unfertilized control. The greatest aboveground biomass accumulation (3× that of control) occurred in plots fertilized with 450 kg N ha−1, but nearly as much growth occurred when 37.5 kg N ha−1 was added periodically. Photosynthesis, chlorophyll concentrations and growth increased rapidly after the midseason application of 37.5 kg N ha−1 but not after the late-season application. Although nitrogen fertilization increased leaf area per plant, leaf nitrogen concentration did not differ between treatments. There was no evidence to indicate that fertilization extended the physiologically active season or increased susceptibility to drought or cold. Sycamore leaves accumulated sucrose and mannose in response to water stress in all treatments. Photosynthetic pigment concentrations and net photosynthetic rate were the most sensitive indicators of growth response to nitrogen fertilization in the first growing season. Careful timing (based on physiological indicators) of low level applications of nitrogen fertilizer can optimize growth.  相似文献   

16.
大气氮沉降增加深刻影响生态系统物种多样性、生产力及其稳定性,研究草原生态系统N库如何响应不断增加的大气氮沉降至关重要。本研究在内蒙古额尔古纳草甸草原开展刈割和不同水平外源氮添加试验,设置6个氮添加水平: 0、2、5、10、20和50 g·m-2·a-1,同时设置刈割处理,分为刈割和不刈割2个水平。在连续处理的第7年,采集群落中优势植物地上部分、群落根、地表凋落物和0~100 cm分层土壤样品,测定N含量并计算N库储量。结果表明: 氮添加显著增加植物地上部分和凋落物N含量,以及羊草、植物群落和凋落物的N库及生态系统N库总量。刈割处理显著增加羊草叶片和凋落物N含量,降低羊草、植物群落和凋落物N库,但并不改变它们对氮添加的响应格局。此外,刈割和氮添加对植物群落N库存在显著的交互作用。在不刈割处理下,高水平氮添加使更多的氮储存在凋落物中等待分解,植物群落N库的饱和阈值出现在10 g·m-2·a-1;在刈割处理下,植物群落N库表现为随氮添加量增加而不断增加,并且在相同水平氮添加条件下刈割后进入到植物群落N库中的氮更多。刈割可以缓解氮沉降不断增加对生物多样性和生态系统稳定性造成的不利影响,并可以在一定程度上推迟氮沉降增加引起的生态系统氮饱和的发生。  相似文献   

17.
We investigated the response of spring wheat and oilseed rape to nitrogen (N) supply, focusing on the critical period for grain number definition and grain filling. Crops were grown in containers under a shelter and treated with five combinations of applied N. Wheat and oilseed rape produced comparable amounts of biomass and yield when corrected for the costs of biomass synthesis (SC). From the responses of biomass and yield to late N applications and the apparent contribution of mobilised biomass to yield, it seems that the yield of oilseed rape was more source-limited during grain filling than that of wheat, particularly at the medium and high N levels. Both species recovered equal amounts of N from the total available N in the soil and had similar N use efficiencies, expressed as yield per unit of N absorbed. However, oilseed rape had higher efficiency to convert absorbed N in biomass, but lower harvest index of N than wheat. Oilseed rape had similar or lower root biomass than wheat, depending on N level, but higher root length per unit soil volume and specific root length. The specific uptake rate of N per unit root dry weight during the critical period for grain number determination was higher in oilseed rape than in wheat. In wheat, N limitation affected growth through a similar or lower reduction in radiation use efficiency corrected for synthesis costs (RUESC) than in the cumulative amount of intercepted photosynthetically active radiation (IPARc). In oilseed rape, lower growth due to N shortage was associated more with RUESC than IPARc, during flowering while during grain filling both components contributed similarly to decreased growth. RUESC and the concentration of N in leaves and inflorescence (LIN%) decreased from flowering to maturity and were curvilinearly related. Oilseed rape tended to have higher RUESC than wheat at high N supply during the critical period for grain number determination, and generally lower during grain filling. The reasons for these differences and possibilities to increase yield potential are discussed in terms of the photosynthetic efficiency of the different organs and changes in source–sink ratio during reproductive stages. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Four biennial species (Arctium tomentosum, Cirsium vulgare, Dipsacus sylvester and Daucus carota) which originate from habitats of different nutrient availability were investigated in a 2-year experiment in a twofactorial structured block design varying light (natural daylight versus shading) and fertilizer addition. The experiment was designed to study storage as reserve formation (competing with growth) or as accumulation (see Chapin et al. 1990). We show that (i) the previous definitions of storage excluded an important process, namely the formation of storage tissue. Depending on species, storage tissue and the filling process can be either a process of reserve formation, or a process of accumulation. (ii) In species representing low-resource habitats, the formation of a storage structure competes with other growth processes. Growth of storage tissue and filling with storage products is an accumulation process only in the high-resource plant Arctium tomentosum. We interpret the structural growth of low-resource plants in terms of the evolutionary history of these species, which have closely related woody species in the Mediterranean area. (iii) The use of storage products for early leaf growth determines the biomass development in the second season and the competitive ability of this species during growth with perennial species. (iv) The high-resource plant Arctium has higher biomass development under all conditions, i.e. plants of low-resource habitats are not superior under low-resource conditions. The main difference between high- and low-resource plants is that low-resource plants initiate flowering at a lower total plant internal pool size of available resources.  相似文献   

19.
The effect of mineral N availability on nitrogen nutrition and biomass partitioning between shoot and roots of pea (Pisum sativum L., cv Baccara) was investigated under adequately watered conditions in the field, using five levels of fertiliser N application at sowing (0, 50, 100, 200 and 400 kg N ha–1). Although the presence of mineral N in the soil stimulated vegetative growth, resulting in a higher biomass accumulation in shoots in the fertilised treatments, neither seed yield nor seed nitrogen concentration was affected by soil mineral N availability. Symbiotic nitrogen fixation was inhibited by mineral N in the soil but it was replaced by root mineral N absorption, which resulted in optimum nitrogen nutrition for all treatments. However, the excessive nitrogen and biomass accumulation in the shoot of the 400 kg N ha–1 treatment caused crop lodging and slightly depressed seed yield and seed nitrogen content. Thus, the presumed higher carbon costs of symbiotic nitrogen fixation, as compared to root mineral N absorption, affected neither seed yield nor the nitrogen nutrition level. However, biomass partitioning within the nodulated roots was changed. The more symbiotic nitrogen fixation was inhibited, the more root growth was enhanced. Root biomass was greater when soil mineral N availability was increased: root growth was greater and began earlier for plants that received mineral N at sowing. Rooting density was also promoted by increased mineral N availability, leading to more numerous but finer roots for the fertilised treatments. However, the maximum rooting depth and the distribution of roots with depth were unchanged. This suggested an additional direct promoting effect of mineral N on root proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号