首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 5 毫秒
1.
How does the brain process incoming information and produce thoughts? These questions represent, to all likelihood, the most challenging matters ever faced by natural sciences, matters which may never be fully comprehended. The evolution of the nervous system that, in about billion of years, brought into existence the human brain progressed through an ever-increasing complexity of neural networks. This evolution began from the diffuse nervous system, in which primordial neurons were able to sense the environmental inputs and convey them to effector organs and to the neighbouring neurons. At the next evolutionary stage the conglomerates of neuronal cell bodies, the ganglia, appeared, thus forming the primitive centralized nervous system. The developments which ensued went through a continuous increase in complexity of neuronal conglomerates, which eventually formed the central nervous system, which attained maximal perfection in mammals. In this issue of ASN NEURO, Osborne et al. have described details of real-time imaging of cannabinoid receptor trafficking in astrocytes, a technique that will help to elucidate the role of these receptors in the ever-increasing complex neural networks.  相似文献   

2.
Name a single-celled eukaryote that boasts a small genome size, is easily cultivated in haploid form, for which a wide variety of molecular genetic tools are available, and that exhibits a simple, polarized secretory apparatus with a well-defined endoplasmic reticulum and Golgi that can serve as a model for understanding secretion. Got it? Now name a cell with all these attributes that contains at least a dozen distinct and morphologically well-defined intracellular organelles, including three distinct types of secretory vesicles and two endosymbiotic organelles. Not so sure anymore?  相似文献   

3.
The secretory pathway delivers proteins synthesized at the rough endoplasmic reticulum (RER) to various subcellular locations via the Golgi apparatus. Currently, efforts are focused on understanding the molecular machineries driving individual processes at the RER and Golgi that package, modify and transport proteins. However, studies are routinely performed using non‐dividing cells. This obscures the critical issue of how the secretory pathway is affected by cell division. Indeed, several studies have indicated that protein trafficking is down‐regulated during mitosis. Moreover, the RER and Golgi apparatus exhibit gross reorganization in mitosis. Here I provide a relatively neglected perspective of how the mitotic cyclin‐dependent kinase (CDK1) could regulate various stages of the secretory pathway. I highlight several aspects of the mitotic control of protein trafficking that remain unresolved and suggest that further studies on how the mitotic CDK1 influences the secretory pathway are necessary to obtain a deeper understanding of protein transport.  相似文献   

4.
Human M-proinsulin was cleaved by trypsin at the R31R32–E33 and K64R65–G66 bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K59R60–G61 bond but at the B/C junction cleavage occurred at the R31R32–E33 as well as the R31–R32E33 bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the kcat./Km values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02 ± 0.08 × 105 s− 1 M− 1) and the cleavage of the K29–T30 bond of M-insulin-RR (1.3 ± 0.07 × 105 s− 1 M− 1). However, the K29–T30 bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (kcat./Km values around 1000 s− 1 M− 1). Hence, as the biosynthetic path follows the sequence; proinsulin → insulin-RR → insulin, the K29–T30 bond becomes shielded, exposed then shielded again respectively.  相似文献   

5.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

6.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号