首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Li Y  Hu J  Vita R  Sun B  Tabata H  Altman A 《The EMBO journal》2004,23(5):1112-1122
Protein kinase C-theta (PKCtheta) plays an important role in T-cell activation via stimulation of AP-1 and NF-kappaB. Here we report the isolation of SPAK, a Ste20-related upstream mitogen-activated protein kinase (MAPK), as a PKCtheta-interacting kinase. SPAK interacted with PKCtheta (but not with PKCalpha) via its 99 COOH-terminal residues. TCR/CD28 costimulation enhanced this association and stimulated the catalytic activity of SPAK. Recombinant SPAK was phosphorylated on Ser-311 in its kinase domain by PKCtheta, but not by PKCalpha. The magnitude and duration of TCR/CD28-induced endogenous SPAK activation were markedly impaired in PKCtheta-deficient T cells. Transfected SPAK synergized with constitutively active PKCtheta to activate AP-1, but not NF-kappaB. This synergistic activity, as well as the receptor-induced SPAK activation, required the PKCtheta-interacting region of SPAK, and Ser-311 mutation greatly reduced these activities of SPAK. Conversely, a SPAK-specific RNAi or a dominant-negative SPAK mutant inhibited PKCtheta- and TCR/CD28-induced AP-1, but not NF-kappaB, activation. These results define SPAK as a substrate and target of PKCtheta in a TCR/CD28-induced signaling pathway leading selectively to AP-1 (but not NF-kappaB) activation.  相似文献   

3.
We investigated the role of protein kinase C theta (PKCtheta) in the activation of the NF-kappaB cascade in primary human CD4(+) lymphocytes. Among six or so PKC isoforms expressed in T cells, only PKCtheta participates in the assembly of the supramolecular activation clusters at the contact site of the TCR with Ag. Signaling via both the TCR and CD28 is required for optimal activation of the multisubunit IkappaB kinase (IKK) complex in primary human T lymphocytes; this activation could be inhibited by a Ca(2+)-independent PKC isoform inhibitor, rottlerin. Moreover, endogenous PKCtheta physically associates with activated IKK complexes in CD3/CD28-costimulated primary CD4(+) T cells. The same set of stimuli also induced relocation of endogenous PKCtheta and IKKs to a GM1 ganglioside-enriched, detergent-insoluble membrane compartment in primary T cells. IKKs recruited to these lipid rafts were capable of phosphorylating a recombinant IkappaBalpha sustrate. Confocal microscopy further demonstrated that exogenously expressed PKCtheta and IKKss colocalize in the membrane of CD3/CD28-costimulated Jurkat T cells. Constitutively active but not kinase-inactive PKCtheta activated IKKbeta in Jurkat T cells. Expression of dominant-active PKCtheta also had stimulatory effects on the CD28 response element of the IL-2 promoter. Taken together, these data show that the activation of PKCtheta by the TCR and CD28 plays an important role in the assembly and activation of IKK complexes in the T cell membrane.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Triggering of lymphocyte antigen receptors is the critical first step in the adaptive immune response against pathogens. T cell receptor (TCR) ligation assembles a large membrane signalosome, culminating in NF-kappaB activation [1,2]. Recently, caspase-8 was found to play a surprisingly prominent role in lymphocyte activation in addition to its well-known role in apoptosis [3]. Caspase-8 is activated after TCR stimulation and nucleates a complex with B cell lymphoma 10 (BCL10), paracaspase MALT1, and the inhibitors of kappaB kinase (IKK) complex [4]. We now report that the ubiquitin ligase TRAF6 binds to active caspase-8 upon TCR stimulation and facilitates its movement into lipid rafts. We identified in silico two putative TRAF6 binding motifs in the caspase-8 sequence and found that mutation of critical residues within these sites abolished TRAF6 binding and diminished TCR-induced NF-kappaB activation. Moreover, RNAi-mediated silencing of TRAF6 abrogated caspase-8 recruitment to the lipid rafts. Protein kinase Ctheta (PKCtheta), CARMA1, and BCL10 are also required for TCR-induced caspase-8 relocation, but only PKCtheta and BCL10 control caspase-8 activation. Our results suggest that PKCtheta independently controls CARMA1 phosphorylation and BCL10-dependent caspase-8 activation and unveil an essential role for TRAF6 as a critical adaptor linking these two convergent signaling events.  相似文献   

11.
12.
The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号