首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of rat liver malic enzyme by restriction of protein intake has been studied in conjunction with the biosynthesis of fatty acids, fatty acid synthetase, glutathione reductase, and other “lipogenic” enzymes in the various experimental animals. No correlation has been detected between malic enzyme activity and lipogenesis under these conditions. Conversely, a positive correlation between malic enzyme and glutathione reductase has been noted. Possible functions of malic enzyme which appear consistent with these observations are postulated.  相似文献   

2.
During aging, there is a decrease in the activity of the 6-phosphogluconate dehydrogenase enzyme in rat liver. The "old" 6-phosphogluconate dehydrogenase enzyme is about 26% less active than the "young" enzyme. In this paper, some biochemical and chemical properties of this enzyme are studied. 2,4,6-Trinitro-benzenesulfonic acid measurements indicate that the old enzyme has 11 lysine residues less than the young enzyme. The proteolysis with trypsin produces more peptides in the young enzyme than in the old one. However, similar numbers of peptides were produced when endoproteinase Arg-C was used on both enzymes. Moreover, the treatment of the young enzyme with ascorbate for 15 min produces the loss of 8 lysine residues. These results suggest that during aging there is a modification of the lysine residue, and this could be involved in the loss of its enzymatic activity.  相似文献   

3.
Rats were fasted and then refed a high carbohydrate-fat free diet, and the activities of the mRNA coding for liver malic enzyme [EC 1.1.1.40] in 6-week-old and 10-month-old male rats were determined by in vitro translation of the liver cytoplasmic poly(A)-containing RNA in a rabbit reticulocyte lysate. After refeeding the mRNA activities of the young rats were about 7-fold of those of the aged rats, and roughly parallel to the enzyme activities. This suggests that the age-dependent impairment of the enzyme induction [Iritani, N. et al. (1981) Biochim. Biophys. Acta 665, 636] can be ascribed to the decrease of mRNA activity.  相似文献   

4.
The half-lives of hepatic malic enzyme and total liver soluble proteins were determined in protein-sufficient and protein-deficient rats after injection of tracer doses of radioactively labeled leucine. The results obtained in these experiments have demonstrated that the increased levels of malic enzyme obtained under conditions of severe protein restriction are due to elevated rates of synthesis of the enzyme protein, with no apparent change in the rate of its degradation.  相似文献   

5.
6.
Summary Rabbit antibodies against pigeon liver malic enzyme (EC 1.1.1.40) were prepared. The antiserum gave single precipitation line with crude pigeon liver extract. Cross reaction was observed with partially purified malic enzyme or crude extract from chicken liver. Positive cross reaction was also observed with the concentrated cytosolic fraction of two human carcinoma cell lines which were demonstrated to contain high malic enzyme activity. All other proteins examined did not react with the antibodies. When purified pigeon liver malic enzyme was mixed with the antiserumin vitro, a time-dependent inactivation of the enzyme activity was observed. Protection of the enzyme activity against antiserum inactivation was afforded by NADP+ orL-malate. Metal Mn2+ gave little protection.  相似文献   

7.
Summary Using techniques of microdissection and microassay as well as qualitative histochemistry the activity and intra-acinar distribution of G6PDH and ME were studied on selected days of pregnancy in the rat. Both enzymes show distinct fluctuations during the course of pregnancy in keeping with changes in hepatic lipogenesis. Marked increases in activity are seen as early as the 4th day, while highest values are attained on day 20, with a predominant perivenous induction. On day 22, just before parturition a sharp decrease of both enzyme activities with a flattening of the periportal/perivenous gradient was detected. G6PDH shows proportionally considerably larger increases and more distinct changes in zonation. The perivenous fluctuations in G6PDH activity of late gestation are supposed to be caused primarily by insulin. Although estrogen is known to induce both enzymes, the temporal changes in enzyme activity in pregnancy cannot be related to the action of estrogen alone. The changes in enzyme activity, however, correspond well to those of progesterone, and although no direct action of progesterone on these enzymes has yet been proposed, further work on its effects on enzyme activity and distribution is indicated.  相似文献   

8.
Using techniques of microdissection and microassay as well as qualitative histochemistry the activity and intra-acinar distribution of G6PDH and ME were studied on selected days of pregnancy in the rat. Both enzymes show distinct fluctuations during the course of pregnancy in keeping with changes in hepatic lipogenesis. Marked increases in activity are seen as early as the 4th day, while highest values are attained on day 20, with a predominant perivenous induction. On day 22, just before parturition a sharp decrease of both enzyme activities with a flattening of the periportal/perivenous gradient was detected. G6PDH shows proportionally considerably larger increases and more distinct changes in zonation. The perivenous fluctuations in G6PDH activity of late gestation are supposed to be caused primarily by insulin. Although estrogen is known to induce both enzymes, the temporal changes in enzyme activity in pregnancy cannot be related to the action of estrogen alone. The changes in enzyme activity, however, correspond well to those of progesterone, and although no direct action of progesterone on these enzymes has yet been proposed, further work on its effects on enzyme activity and distribution is indicated.  相似文献   

9.
Coding nucleotide sequence of rat liver malic enzyme mRNA   总被引:6,自引:0,他引:6  
The nucleotide sequence of the mRNA for malic enzyme ((S)-malate NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40) from rat liver was determined from three overlapping cDNA clones. Together, these clones contain 2078 nucleotides complementary to rat liver malic enzyme mRNA. The single open reading frame of 1761 nucleotides codes for a 585-amino acid polypeptide with a calculated molecular mass of about 65,460 daltons. The cloned cDNAs contain the complete 3'-noncoding region of 301 nucleotides for the major mRNA species of rat liver and 16 nucleotides of the 5'-noncoding region. Amino acid sequences of seven tryptic peptides (67 amino acids) from the purified protein are distributed through the single open reading frame and show excellent correspondence with the translated nucleotide sequence. The putative NADP-binding site for malic enzyme was identified by amino acid sequence homology with the NADP-binding site of the enoyl reductase domain of fatty acid synthetase.  相似文献   

10.
There is a good correlation between changes in malic enzyme activity and immunoreactive protein in both hepatic and brown adipose tissue during postnatal development of the rat. Furthermore, the previously observed premature appearance of hepatic malic enzyme during the suckling period, in response to triiodothyronine, can also be achieved through dichloroacetate administration. A combination of triiodothyronine and dichloroacetate induces malic enzyme activity and immunoreactive protein in a synergistic manner, indicating different sites of action in the control of synthesis of hepatic malic enzyme although neither agent was found to affect the level of malic enzyme in brown adipose tissue. There is evidence to suggest that changes in the ability of the liver to express malic enzyme in response to triiodothyronine administration occur early in postnatal life.  相似文献   

11.
12.
Several human normal and neoplastic cell lines were screened for production of PDGF receptor competing activity. Conditioned medium from two sarcomas and one glioma blocked 125I-PDGF binding to human foreskin fibroblasts in a dose-dependent manner. In each case this effect was abolished when the conditioned medium was pretreated with PDGF-antiserum, indicating that the receptor competing activity was immunologically related to PDGF. Direct evidence for de novo synthesis of a PDGF-like component in the cultures was afforded by 35S-cysteine labeling of the three cell lines, followed by immunoprecipitation with PDGF antiserum. This resulted in the specific precipitation of a 31,000 molecular weight labeled protein, which upon reduction was split into two polypeptides of molecular weights 17,000 and 16,500. The significance of these findings in view of the recently discovered structure homology between PDGF and the transforming gene product of simian sarcoma virus, p28sis, is discussed.  相似文献   

13.
14.
15.
Crystallization of an NADP+-dependent malic enzyme from rat liver   总被引:1,自引:0,他引:1  
Crystals of a tetrameric NADP+-dependent malic enzyme from rat liver have been grown in the presence of NADP+ using the hanging-drop method of vapour diffusion with ammonium sulphate as the precipitant. Measurement of the crystal density and calculation of the values of Vm for different numbers of polypeptide chains in the unit cell indicate that the asymmetric unit of the crystal contains a complete tetramer, allowing the application of non-crystallographic symmetry to the determination of the molecular structure of this enzyme. This structure would provide only the second example for an enzyme involved in oxidative decarboxylation, the other being 6-phosphogluconate dehydrogenase. In addition, then, to providing an insight into the structure-function relationship in malic enzyme, the successful structure determination would permit valuable comparisons to be made between these two and other enzymes with this catalytic activity.  相似文献   

16.
Incubation of malic enzyme (L-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) with ethoxyformic anhydride caused the time-dependent loss of its ability to catalyze reactions requiring the nucleotide cofactor NADP+ or NADPH, such as the oxidative decarboxylase, the NADP+ - stimualted oxalacetate decarboxylase, the pyruvate reductase, and the pyruvate-medium proton exchange activities. Similar loss of oxidative decarboxylase and pyruvate reductase activities was affected by photo-oxidation in the presence of rose bengal. The inactivation of oxidative decarboxylase activity by ethoxyformic anhydride was accompanied by the reaction of greater than or equal to 2.3 histidyl residues per enzyme site and was strongly inhibited by NADP+. Ethoxyformylation also impaired the ability of malic enzyme to bind NADP+ or NADPH. These results support the involvement of histidyl residue(s) at the nucleotide binding site of malic enzyme.  相似文献   

17.
18.
H J Lee  G G Chang 《FEBS letters》1990,277(1-2):175-179
Pigeon liver malic enzyme (EC 1.1.1.40) has a double dimer quaternary structure. The NADP+ analogs, aminopyridine adenine dinucleotide phosphate and nicotinamide-1,N6-ethenoadenosine dinucleotide phosphate, bind to the enzyme anti-cooperatively. In the presence of non-cooperative competing ligand NADP+, the binding parameter Hill coefficients of these analogues changed very little. Binding of L-malate with enzyme-AADP+ complex first enhanced then reduced the nucleotide fluorescence. Two L-malate binding sites, with Kd values of 23-30 and 270-400 microM, respectively. for the tight and weak binding sites were postulated. A hybrid model between the sequential and pre-existing asymmetrical models was proposed for the pigeon liver malic enzyme.  相似文献   

19.
Genetic regulation of malic enzyme activity in the mouse   总被引:1,自引:0,他引:1  
Cytosolic malic enzyme catalyzes the NADP(+)-dependent oxidative decarboxylation of malate to pyruvate and CO2. Additionally, this enzyme produces large amounts of reducing equivalents (NADPH) required for de novo fatty acid synthesis and provides a precursor for oxaloacetate replacement in the mitochondria. Malic enzyme is considered a key lipogenic enzyme and changes in enzyme activity parallel changes in the lipogenic rate. As would be expected, the activity of malic enzyme responds to a variety of dietary and hormonal factors acting mainly on the rate of enzyme synthesis. In the mouse, the structural locus for malic enzyme (Mod-1) is located on chromosome 9. Two alleles reflecting differences in electrophoretic mobility have been identified. This report demonstrates that the amount of hepatic malic enzyme activity is strain-dependent and is regulated by a malic enzyme regulator locus (Mod1r) located on the proximal end of chromosome 12. Two alleles have been identified: Mod1ra, conferring high enzyme activity (C57BL/6J), and Mod1rb, conferring low enzyme activity (C57BL/KsJ). Biochemical studies have demonstrated differences in the apparent Km and Vmax and in specific activity on purification and immunoprecipitation, features that suggest changes in enzyme structure even though no differences were observed by electrophoresis and isoelectric focusing. These combined data suggest that differences in both enzyme quantity and structure may be involved in the genetic regulation of malic enzyme activity in mice.  相似文献   

20.
Total tRNA extracted from livers of young (7 +/- 1 weeks), adult (40 +/- 1 weeks) and old (80 +/- 1 weeks) rats showed quantitative variation with age, being maximal in adults. Young and old animals yielded almost the same level of tRNAs. Quantitative changes in tRNAs were also observed from the study of amino acid acceptor activity using homologous enzyme i.e., aminoacyl-tRNA synthetase preparations from rat liver of the same age group. Quantitative variation followed the trend of qualitative variation. When tRNA was amino-acylated with a heterologous enzyme system, i.e., synthetase preparation from rat liver of another age group, age-related variation in aminoacyl-tRNA did not follow a pattern similar to that in the case of the homologous enzyme system. Young and adult synthetase enzymes showed maximum affinity for their homologous tRNAs but synthetases from old rat liver did not show any specific affinity for "old" tRNAs. This shows that apart from tRNAs, enzyme activity also changes with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号