首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the μs-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 → 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 → 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.  相似文献   

2.
Effects of the herbicide linuron on photosynthesis of the freshwater macrophytes Elodea nuttallii (Planchon) St. John, Myriophyllum spicatum L., Potamogeton crispus L., Ranunculus circinatus Sibth., Ceratophyllum demersum L. and Chara globularis (Thuill.), and of the alga Scenedesmus acutus Meyen, were assessed by measuring the efficiency of photosystem II electron flow using chlorophyll fluorescence. In a series of single-species laboratory tests several plant species were exposed to linuron at concentrations ranging from 0 to 1000 μg l−1. It was found that the primary effect of linuron, inhibition of photosystem II electron flow, occurred with a half-lifetime of about 0.1 to 1.9 h after addition of linuron to the growth medium. The direct effect of the herbicide on photosynthesis appeared to be reversible. Complete recovery from the inhibition occurred with a half-lifetime of 0.5 to 1.8 h after transfer of linuron treated plants to linuron free medium. The EC50,24h of the inhibition of photosystem II electron transport by linuron was about 9–13 μg l−1 for most of the macrophytes tested. For S. acutus the EC50,72h for inhibition of photosystem II electron flow was about 17 μg l−1 for the free suspension, and 22 μg l−1 for cells encapsulated in alginate beads. In a long-term indoor microcosm experiment, the photosystem II electron flow of the macrophytes E. nuttallii, C. demersum and the alga Spirogyra sp. was determined during 4 weeks of chronic exposure to linuron. The EC50,4weeks for the long-term exposure was 8.3, 8.7 and 25.1 μg l−1 for E. nuttallii, C. demersum and Spirogyra, respectively. These results are very similar to those calculated for the acute effects. The relative biomass increase of E. nuttallii in the microcosms was determined during 3 weeks of chronic exposure and was related to the efficiency of photosystem II electron transport as assessed in the different treatments. It is concluded that effects of the photosynthesis inhibiting herbicide on aquatic macrophytes, algae and algae encapsulated in alginate beads can be conveniently evaluated by measuring photosystem II electron transport by means of chlorophyll fluorescence. This method can be used as a rapid and non-destructive technique in aquatic ecological research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble. Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.  相似文献   

4.
Nutrient limitation of the primary production of phytoplankton at some stations in southern and central Lake Baikal was studied by nutrient enrichment experiments in August 2002. Chlorophyll (Chl.) a concentrations ranged from 0.7 to 5.8μgl−1. Inorganic nutrient concentrations were low: soluble reactive phosphorus ranged from 0.05 to 0.20μmoll−1, ammonia from 0.21 to 0.41μmoll−1, and nitrite plus nitrate from 0.33 to 0.37μmoll−1. In the five enrichment experiments, phosphate spikes and phosphate plus nitrate spikes always stimulated primary production. Nitrate spikes also stimulated primary production in four of the experiments. Significant differences were detected between the controls and phosphate spikes and between the controls and phosphate plus nitrate spikes. Thus, the first limiting nutrient is thought to be phosphorus, but once phosphorus is supplied to the surface water, the limiting nutrient will quickly shift from phosphorus to nitrogen.  相似文献   

5.
In winter 1992/1993, a persistent local maximum in fluorescence, dissolved iron, dissolved aluminium and dissolved inorganic phosphate was found, upstream of the turbidity maximum in the freshwater zone of the Ems estuary (The Netherlands — Federal Republic Germany; western Europe). Upstream of this local maximum values ranged from 6 to 9 rel. units fluorescence, 0.9 to 2.4 μmol dm−3 iron, 0.5 to 0.7 μmol dm−3 aluminium and 0.6 to 2.3 μmol dm−3 dissolved inorganic phosphate. Within the maximum peak values of 24 rel. units fluorescence, 5.8 μmol dm−3 iron, 1.4 μmol dm−3 aluminium and 8.3 μmol dm−3 dissolved inorganic phosphate were observed. Downstream, fluorescence (indicator of dissolved organic carbon) showed conservative mixing with sea water, whereas dissolved iron, aluminium and dissolved inorganic phosphate did not. Dissolved aluminium and iron were quickly removed from solution to reach values of ∼100 nmol dm−3 aluminium and ∼0.3 μmol·dm−3 Fe at salinities of approximately 7 PSU. Further seaward iron concentrations gradually decreased to levels below 0.04 μmol dm−3. Dissolved aluminium first decreased to ∼20 nmol dm−3 at 29 PSU and increased again to concentrations of 30–44 nmol dm−3 at higher salinities. Dissolved inorganic phosphate, however, first decreased to upstream concentrations before reaching a secondary peak in the mid-estuarine reaches. At salinities >25 PSU dissolved inorganic phosphate mixed conservatively with sea water. It is hypothesized that adsorption-desorption equilibria are responsible for the local maximum values of fluorescence (DOC), iron, aluminium and dissolved inorganic phosphate. The similarity between the observed curves suggests a common underlying process, possibly related to the adjustment of new equilibria between suspended matter of marine and riverine origin.  相似文献   

6.
比较河流浮游藻类和着生藻类群落的时空格局及其与环境因子关系的差异,有助于了解两类藻的区别与联系。然而,目前这方面的研究还不多。基于2019年秋季和2020年夏季金沙江上段干流17个样点藻类及水体理化指标的调查数据,分析了不同季节浮游藻类和着生藻类群落结构及其主要环境驱动因子,比较了两类藻的多样性格局及其与环境关系的异同。结果发现,调查河段的浮游藻类和着生藻类均以硅藻为主,其中浮游藻类以极小曲壳藻(Achnanthes minutissima)、钝脆杆藻(Fragilaria capucina)、适中舟形藻(Navicula accomoda)为主要优势种,着生藻类以极小曲壳藻(Achnanthes minutissima)、扁圆卵形藻(Cocconeis placentula)、橄榄绿色异极藻(Gomphonema olivaceum)为主要优势种。浮游藻类和着生藻类秋季平均密度分别为:2.41×10~5个/L、9.43×10~3个/cm~2,均明显高于夏季的平均密度(4.84×10~4个/L、4.84×10~3个/cm~2)。两类藻的群落格局表现出明显的季节变化,但只有着生藻分类单元...  相似文献   

7.
Progression of biofilm formation was monitored at two stations near a nuclear power plant, Kalpakkam, located near coastal waters of Bay of Bengal. These stations are natural marine environment, station 1; and the condenser outfall area of the power plant the modified marine environment station 2. The biofilm formed on plexiglas panels was analysed in triplicates at 24 h intervals for various physical, chemical and biological parameters for 120 h (5 days). The biofilm formation showed both temporal and spatial variation in various parameters assayed. Among the water-quality parameters analysed, seawater temperature showed significant increase (~5°C) at station 2. The increase in water temperature enhanced the metabolism and influenced most of the biofilm parameters assayed at station 2. Biofilm formed at station 2 was very thick (113 μm) than that of at station 1 (22 μm). The distribution of parameters like biofilm thickness, biomass, chlorophyll a, particulate organic carbon, hexose sugar and diatom counts showed similar trend (i.e., a sharp increase after 96 h of biofilm growth) in the biofilm formed at station 2. Moderately high ammonia levels (44 μg l−1) were detected in the biofilm formed at station 2. The biofilm microbiota was diverse at both the stations: it constituted bacteria [nitrate reducers (NRB), ammonia oxidizers (AOB) and culturable aerobic heterotrophic bacteria (CAHB)], algae and macrofoulants. The various bacterial types assayed showed a population range from 102 to 106 cfu cm−2. The final community after 120 h at station 1 comprised CAHB, NRB, diatoms, barnacle cyprids and juvenile bryozoans. At station 2, the biofilm initially consisted of CAHB, NRB and diatoms but after 120 h, AOB, cyanobacteria and filamentous algae were dominant. The plausible factors that influenced biofilm formation were temperature, nutrients and organic matter. The biofilm phenomenon in natural and modified marine environment was hypothesized and discussed.  相似文献   

8.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

9.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

10.
Ecology of a marineRivularia population   总被引:1,自引:1,他引:0  
An account is given of the environmental chemistry and physiological ecology of a population ofRivularia atra growing in the upper eulittoral of Tyne Sands, a sheltered bay in S-E. Scotland. Large masses of detached seaweed tend to be deposited in the supralittoral of this bay and their decay leads to elevated levels of dissolved phosphate (typically 50–150 μg 1−1 P) in the water of shallow pools of the upper eulittoral. Much (usually 50%) of this phosphate is organic, as opposed to phosphate in the open sea just outside the bay, where it is almost entirely inorganic. This organic phosphate is presumably available to theRivularia, as colonies show marked alkaline phosphatase activity. The colonies are small (mostly <1 mm diameter), but with a high nitrogenase activity (expressed per unit chlorophyll) in the light are high (sometimes approaching 0.2 nM C2H4 μg chl a−1 min−1 × 10−3) but there is a rapid and very marked drop on transfer to the dark. It is suggested that this latter feature may be of adaptive significance for this population, as colonies in many pools are covered intermittently by sand.  相似文献   

11.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

12.
This study describes the physical and chemical properties of 17 Afroalpine lakes (>2 m deep) and 11 pools (<2 m deep) in the Rwenzori mountains, Uganda-DR Congo, with the aim to establish the baseline conditions against which to evaluate future environmental and biological changes in these unique tropical ecosystems, and to provide the foundation for lake-based paleoenvironmental studies. Most Rwenzori lakes are located above 3,500 m elevation, and dilute (5–52 μS/cm specific conductance at 25°C) open systems with surface in- and outflow. Multivariate ordination and pairwise correlations between environmental variables mainly differentiate between (1) lakes located near or above 4,000 m (3,890–4,487 m), with at least some direct input of glacial meltwater and surrounded by rocky catchments or alpine vegetation; and (2) lakes located mostly below 4,000 m (2,990–4,054 m), remote from glaciers and surrounded by Ericaceous vegetation and/or bogs. The former group are mildly acidic to neutral clear-water lakes (surface pH: 5.80–7.82; Secchi depth: 120–280 cm) with often above-average dissolved ion concentrations (18–52 μS/cm). These lakes are (ultra-) oligotrophic to mesotrophic (TP: 3.1–12.4 μg/l; Chl-a: 0.3–10.9 μg/l) and phosphorus-limited (mass TN/TP: 22.9–81.4). The latter group are mildly to strongly acidic (pH: 4.30–6.69) waters stained by dissolved organic carbon (DOC: 6.8–13.6 mg/l) and more modest transparency (Secchi-disk depth: 60–132 cm). Ratios of particulate carbon, particulate nitrogen and chlorophyll a in these lakes indicate that organic matter in suspension is primarily derived from the lakes’ catchments rather than aquatic primary productivity. Since key features in the Rwenzori lakes’ abiotic environment are strongly tied to temperature and catchment hydrology, these Afroalpine lake ecosystems can be expected to respond sensitively to climate change and glacier melting. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

13.
Photosynthesis-light response curves of Gelidium sesquipedale from the west coast of Portugal (Cape Espichel) were determined at four different depths, 3, 10, 15 and 22 m. Data acquisition using chlorophyll a fluorescence methodology and oxygen electrode measurements were compared. Response curves were determined over an increasing range of irradiance values (I), from darkness to 900 μmol photon m-2 s-1 PAR. In general, light response curves obtained for G. sesquipedale showed a similar pattern whether determined by the chlorophyll fluorescence method or by oxygen evolution. The photosynthetic capacity of G. sesquipedale decreased with depth, as expected, revealing a ‘sun’ and ‘shade’ acclimation pattern, between shallow and deeper waters. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
A new type of dual-channel PAM chlorophyll fluorometer has been developed, which is specialised in the detection of extremely small differences in photosynthetic activity in algae or thylakoids suspensions. In conjunction with standardised algae cultures or isolated thylakoids, the new device provides an ultrasensitive biotest system for detection of toxic substances in water samples. In this report, major features of the new device are outlined and examples of its performance are presented using suspensions of Phaeodactylum tricornutum (diatoms) and of freeze-dried thylakoids of Lactuca sativa (salad). Investigated and reference samples are exposed to the same actinic intensity of pulse-modulated measuring light. The quantum yields are assessed by the saturation pulse method. Clock-triggered repetitive measurements of quantum yield typically display a standard deviation of 0.1%, corresponding to the inhibition induced by 0.02 μg diuron l−1. Hence, for diuron or compounds with similar toxicity, the detection limit is well below the 0.1 μg l−1 defined as the limit for the presence of a single toxic substance in water by the European Commission drinking water regulation. The amounts of water and biotest material required for analysis are very small, as a single assay involves two 1 ml samples, each containing ca. 0.5 μg chlorophyll. Both with Phaeodactylum and thylakoids the relationship between inhibition and diuron concentration is strictly linear up to 10% inhibition, with very similar slopes. Apparent inhibition depends on the actinic effect of the measuring light, showing optima at 6 and 4 μmol quanta m−2 s−1 with Phaeodactylum and thylakoids, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The effects of lead toxicity on leaf gas exchange, chlorophyll content, chlorophyll fluorescence, chloroplast ultrastructure, and opening of stomata were examined in tobacco (Nicotiana tabacum L.) plants. Plants were grown in a growth chamber for 7 d in Hoagland nutrient solution supplemented with 0.0 (control), 5, 10, 25, 50, 100, 300 and 500 μM Pb(NO3)2. Plants treated with 5, 10, and 25 μM Pb(NO3)2 exhibited no abnormalities. Root and shoot growth, net photosynthetic rate and stomatal conductance were significantly reduced in plants treated with 100, 300 and 500 μM Pb(NO3)2. In plants treated with 500 μM Pb(NO3)2, the majority of stomata were closed. The effect of Pb(NO3)2 on chlorophyll content and chlorophyll fluorescence parameters was negligible. However, in plants exposed to 100, 300, and 500 μM Pb(NO3)2, the mesophyll cells showed altered chloroplasts with disrupted thylakoid membranes.  相似文献   

16.
Bottom-ice algae within Antarctic sea ice were examined using chlorophyll fluorescence imaging. The detailed structure of the bottom-ice algal community growing in the platelet and congelation layers of solid pieces of sea ice was evident for the first time in chlorophyll imaging mode. Strands of fluorescence representing algal cells were clearly visible growing upward into brine channels in a fine network. Images of effective quantum yield (ФPSII) revealed that the ФPSII of algae embedded in the sea ice was approximately 0.5. Furthermore, ФPSII decreased slightly with distance from the ice-water interface.The response of Antarctic sea ice algae to changes in irradiance and salinity, and the effects of slowly warming and melting the ice block sample were examined using this system. The ФPSII of bottom-ice algae decreased as irradiance increased and salinities decreased. Bottom-ice algae appear to be most vulnerable to changes in their environment during the melting process of the ice, and this suggests that algae from this region of the ice may not be able to cope with the stress of melting during summer.Chlorophyll fluorescence imaging provides unprecedented imagery of chlorophyll distribution in sea ice and allows measurement of the responses of sea ice algae to environmental stresses with minimal disruption to their physical habitat. The results obtained with this method are comparable to those obtained with algae that have been melted into liquid culture and this indicates that previous melting protocols reveal meaningful data. In this chlorophyll imaging study, rapid light curves did not saturate and this may prevent further use of this configuration.  相似文献   

17.
The influence of the growth retardant chlorocholine chloride on the rate of photosynthetic oxygen evolution and the induction of chlorophyll fluorescence in unicellular green algae Chlamydomonas was studied depending on concentration and the time of cell growth. It was shown that low concentrations chlorocholine chloride (0.02 g/l) affected insignificantly the photosynthesis and chlorophyll fluorescence. The growth of the culture in the presence of higher chlorocholine chloride concentrations (0.2 and 2 g/l) led to a significant reduction in the rate of oxygen production, and photoinduced changes in chlorophyll fluorescence yield. Young cells were more sensitive to chlorocholine chloride than old cells.  相似文献   

18.
The relationship between O2-based gross photosynthesis (GP) and in vivo chlorophyll fluorescence of Photosystem II-based electron transport rate (ETR) as well as the relationship between effective quantum yield of fluorescence (ΦPSII) and quantum yield of oxygen evolution (ΦO_2) were examined in the green algae Ulva rotundata and Ulva olivascens and the red alga Porphyra leucosticta collected from the field and incubated for 3 days at 100 μmol m−2 s−1 in nutrient enriched seawater. Maximal GP was twice as high in Ulva species than that measured in P. leucosticta. In all species ETR was saturated at much higher irradiance than GP. The initial slope of ETR versus absorbed irradiance was higher than that of GP versus absorbed irradiance. Only under absorbed irradiances below saturation or at values of GP <2 μmol O2 m−2 s−1 a linear relationship was observed. In the linear phase, calculated O2 evolved /ETR molar ratios were closed to the theoretical value of 0.25 in Ulva species. In P. leucosticta, the estimated GP was associated to the estimated ETR only at high irradiances. ETR was determined under white light, red light emitting by diodes and solar radiation. In Ulva species the maximal ETR was reached under red light and solar radiation whereas in P. leucosticta the maximal ETR was reached under white light and minimal under red light. These results are in agreement with the known action spectra for photosynthesis in these species. In the case of P. leucosticta, GP and ETR were additionally determined under saturating irradiance in algae pre-incubated for one week under white light at different irradiances and at white light (100 μmol m−2 s−1) enriched with far-red light. GP and growth rate increased at a growth irradiance of 500 μmol m−2 s−1 becoming photoinhibited at higher irradiances, while ETR increased when algae were exposed to the highest growth irradiance applied (2000 μmol m−2 s−1). The calculated O2 evolved /ETR molar ratios were close to the theoretical value of 0.25 when algae were pre-incubated under 500–1000 μmol m−2 s−1. The enrichment by FR light provoked a decrease in both GP and ETR and an increase of nonphotochemical quenching although the irradiance of PAR was maintained at a constant level. In addition to C assimilation, other electron sinks, such as nitrogen assimilation, affected the GP–ETR relationship. The slopes of GP versus ETR or ΦPSII versus ΦO_2 were lower in the algae with the highest N assimilation capacity, estimated as nitrate reductase activity and internal nitrogen contents, i.e., Ulva rotundata and Porphyra leucosticta, than that observed in U. olivascens. The possible mechanisms to explain this discrepancy between GP and ETR are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The presence of hexavalent chromium salt in culture medium negatively affected the growth dynamics and physiological parameters of the benthic microalga Attheya ussurensis. After 1 day of exposure to toxicant at concentrations of 2, 4, 7, and 10 mg/l, the cell counts were 10, 7.9, 5.6, and 4.3 × 103 cells/ml, respectively (versus 13 × 103 cells/ml in the control). A tendency towards a decrease in cell number remained until the end of the experiments; after 7 days of exposure the cell counts were 133, 102, 11, and 7.5 × 103 cells/ml (versus 204 × 103 cells/ml in the control). With increase in potassium bichromate concentration in the culture medium, there was an increase in the ratio of cell height to width and a change in the form of the cell to horseshoe shaped. The contents of chlorophyll a in microalgal cells after 1 day of exposure to 2, 4, 7, and 10 mg/l were 40, 37, 34, and 30 μg/l, respectively (45 μg/l in the control). After 7 days, at chromium salt concentrations of 2 and 4 mg/l, the chlorophyll a content was higher (670 and 647 μg/l) than in the control (605 μg/l); at 7 and 10 mg/l, it significantly decreased to 87 and 65 μg/l, respectively. The contents of carotinoids in microalgal cells after 7 days of exposure to 2 and 4 mg/l were comparable to the control values, while at 7 and 10 mg/l they decreased sharply. The amount of phaeophytin (as a percentage of total chlorophyll a content) increased with increasing potassium bichromate concentration.  相似文献   

20.
Hizikia fusiformis thalli experience dynamic incident light conditions during the period of growth. The present study was designed to examine how changing photon irradiance affects the photosynthesis both in the short and long terms by culturing H. fusiformis under three different light levels: 35 μmol photons m-2 s-1 (low light, LL), 85 μmol photons m-2 s-1 (intermediate light, IL), and 165 μmol photons m-2 s-1 (high light, HL). A similar relative growth rate was observed between IL- and HL-grown algae, but the growth rate was significantly reduced in LL-grown algae. The photosynthetic rates (P n) measured at their respective growth light levels were found to be lowest in the thalli grown at LL and highest at HL. However, LL-grown algae exhibited much higher P n in comparison with IL- and the HL-grown thalli at the same measuring photosynthetic photon flux density, indicating the photosynthetic acclimation to low growth light in H. fusiformis. The photosynthesis–light curves showed that LL-grown algae had a highest light-saturating maximum P n (P max) in comparison with IL- or HL-grown algae when the photosynthetic rates were expressed on the biomass basis. However, P max was highest in HL-grown algae compared to IL- or LL-grown algae when the rates were normalized to chlorophyll a. The photosynthesis–inorganic carbon (Ci) response curves were also significantly affected by the growth light conditions. The highest value of apparent photosynthetic conductance occurred in LL-grown algae while the lowest value in HL-grown algae. Additionally, the activity of external carbonic anhydrase (CA) tended to increase while the total CA activity inclined to decrease in H. fusiformis thalli when the growth light level altered from 35 to 165 μmol photons per square meter per second. The external CA inhibitors showed a higher inhibition in HL-grown algae compared with LL-grown algae. It was proposed that photosynthetic acclimation to low light condition in H. fusiformis was achieved through an increase in the number of reaction centers and increased capacities of electron transport and of Ci transport within cells. The ability of photosynthetic acclimation to low light confers H. fusiformis thalli to overcome the environmental low light condition as a result of the attenuation of seawater or self-shading through enhancing its photosynthetic performance and carbon assimilation necessary for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号