首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell separation events are important throughout the lifespan of a plant. To assure that the plant''s integrity is not compromised, such events, which depend on cell wall degradation, have to be tightly controlled both in time and space. The final step of floral organ abscission in Arabidopsis is controlled by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), in that mutation of IDA causes a block in abscission. Overexpression results in early abscission of floral organs. In a recent article we show that this is also the case when overexpressing the related IDA-LIKE (IDL) proteins, indicating a degree of functional redundancy. Based on gene swap and deletion constructs introduced in the ida mutant and synthetic peptide assays we demonstrated that the conserved C-terminal motif (EPIP) of IDA and IDL1 was sufficient to replace IDA function. This function is dependent on the presence of the receptor-like kinases (RLK) HAESA (HAE) and HAESA-LIKE2 (HSL2), suggesting that an IDA peptide acts as a ligand interacting with these receptors. Our study further revealed that the five IDL genes are expressed at various sites where cell separation takes place. We suggest that the IDL proteins constitute a family of ligands that act through RLKs similar to HAESA and control cell separation at different sites and development stages during the life of the plant.Key words: Arabidopsis, signaling, receptor, ligand, gene-family, cell separation, HAE, IDA  相似文献   

3.
The Never in Mitosis A (NIMA) kinase (the founding member of the Nek family of kinases) has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP) which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell cycle progression with polarized cell growth.  相似文献   

4.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   

5.
6.
7.
Compensation refers to an increase in cell size when the cell number is significantly decreased due to the mutation or gain of function of a gene that negatively affects the cell cycle. Given the importance of coordinated growth during organogenesis in both animal and plant systems, compensation is important to understand the mechanism of size regulation. In leaves, cell division precedes cell differentiation (which involves cell expansion); therefore, a decrease in cell number triggers enhanced cell expansion (compensated cell expansion; hereafter, CCE). Functional analyses of genes for which a loss or gain of function triggers compensation have increased our understanding of the molecular mechanisms underlying the decrease in cell number. Nevertheless, the mechanisms that induce enhanced cell expansion (the link between cell cycling and expansion), as well as the cellular machinery mediating CCE, have not been characterized. We recently characterized an important pathway involved in cell enlargement in KRP2-overexpressing plants. Here, we discuss the potential role of plant KRPs in triggering enlargement in cells with meristematic features.  相似文献   

8.
9.
10.
11.
Tumorigenesis requires the concerted action of multiple pathways, including pathways that stimulate proliferation and metabolism. Epidermal growth factor receptor (EGFR) is a transmembrane receptor-tyrosine kinase that is associated with cancer progression, and the EGFR inhibitors erlotinib/tarceva and tyrphostin/AG-1478 are potent anti-cancer therapeutics. Pgrmc1 (progesterone receptor membrane component 1) is a cytochrome b5-related protein that is up-regulated in tumors and promotes cancer growth. Pgrmc1 and its homologues have been implicated in cell signaling, and we show here that Pgrmc1 increases susceptibility to AG-1478 and erlotinib, increases plasma membrane EGFR levels, and co-precipitates with EGFR. Pgrmc1 co-localizes with EGFR in cytoplasmic vesicles and co-fractionates with EGFR in high density microsomes. The findings have therapeutic potential because a Pgrmc1 small molecule ligand, which inhibits growth in a variety of cancer cell types, de-stabilized EGFR in multiple tumor cell lines. EGFR is one of the most potent receptor-tyrosine kinases driving tumorigenesis, and our data support a role for Pgrmc1 in promoting several cancer phenotypes at least in part by binding EGFR and stabilizing plasma membrane pools of the receptor.  相似文献   

12.
Ubiquitin pathway E3 ligases are an important component conferring specificity and regulation in ubiquitin attachment to substrate proteins. The Arabidopsis thaliana RING (Really Interesting New Gene) domain-containing proteins BRIZ1 and BRIZ2 are essential for normal seed germination and post-germination growth. Loss of either BRIZ1 (At2g42160) or BRIZ2 (At2g26000) results in a severe phenotype. Heterozygous parents produce progeny that segregate 3:1 for wild-type:growth-arrested seedlings. Homozygous T-DNA insertion lines are recovered for BRIZ1 and BRIZ2 after introduction of a transgene containing the respective coding sequence, demonstrating that disruption of BRIZ1 or BRIZ2 in the T-DNA insertion lines is responsible for the observed phenotype. Both proteins have multiple predicted domains in addition to the RING domain as follows: a BRAP2 (BRCA1-Associated Protein 2), a ZnF UBP (Zinc Finger Ubiquitin Binding protein), and a coiled-coil domain. In vitro, both BRIZ1 and BRIZ2 are active as E3 ligases but only BRIZ2 binds ubiquitin. In vitro synthesized and purified recombinant BRIZ1 and BRIZ2 preferentially form hetero-oligomers rather than homo-oligomers, and the coiled-coil domain is necessary and sufficient for this interaction. BRIZ1 and BRIZ2 co-purify after expression in tobacco leaves, which also requires the coiled-coil domain. BRIZ1 and BRIZ2 coding regions with substitutions in the RING domain are inactive in vitro and, after introduction, fail to complement their respective mutant lines. In our current model, BRIZ1 and BRIZ2 together are required for formation of a functional ubiquitin E3 ligase in vivo, and this complex is required for germination and early seedling growth.  相似文献   

13.
14.
15.
16.
Previously we showed that Cool-1 (Cloned out of library-1)/β-Pix (Pak-interactive exchange factor) is phosphorylated at a specific tyrosine residue (Tyr-442) in a Src-dependent manner and serves as a dual function guanine nucleotide exchange factor (GEF)/signaling-effector for Cdc42 that is essential for transformation by Src. Here, we show that knocking-down Cool-1 or overexpressing a Cool-1 mutant that contains substitutions within its Dbl homology domain and is defective for GEF activity, inhibits Src-promoted cell migration. Similarly, the expression of a Cool-1 mutant containing a tyrosine to phenylalanine substitution at position 442, making it incapable of being phosphorylated in response to serum, epidermal growth factor (EGF), or Src, also causes a significant inhibition of the migration and invasive activity of cells expressing oncogenic Src. We further demonstrate that the phosphorylation of Cool-1 at Tyr-442 weakens its ability to bind to one of its primary interaction-partners, Cat-1 (Cool-associated tyrosine phosphosubstrate-1)/Git-1 (G protein-coupled receptor kinase-interactor-1), thus making Cat more accessible for binding to paxillin. This enables cells to alternate between states where they contain large numbers of focal complexes (i.e. conditions favoring Cool-1-Cat interactions) versus reduced numbers of focal complexes (conditions favoring Cat-paxillin interactions). Overall, these findings show that the phosphorylation-dephosphorylation cycle of Cool-1 at Tyr-442 can serve as a key regulatory signal for focal complex assembly-disassembly, and consequently, for the migration and invasive activity of Src-transformed cells.  相似文献   

17.
The clustered genes C-repeat (CRT) binding factor (CBF)1/ dehydration-responsive element binding protein (DREB)1B, CBF2/DREB1C, and CBF3/DREB1A play a central role in cold acclimation and facilitate plant resistance to freezing in Arabidopsis thaliana. Rice (Oryza sativa L.) is very sensitive to low temperatures; enhancing the cold stress tolerance of rice is a key challenge to increasing its yield. In this study, we demonstrate chilling acclimation, a phenomenon similar to Arabidopsis cold acclimation, in rice. To determine whether rice CBF/DREB1 genes participate in this cold-responsive pathway, all putative homologs of Arabidopsis DREB1 genes were filtered from the complete rice genome through a BLASTP search, followed by phylogenetic, colinearity and expression analysis. We thereby identified 10 rice genes as putative DREB1 homologs: nine of these were located in rice genomic regions with some colinearity to the Arabidopsis CBF1CBF4 region. Expression profiling revealed that six of these genes (Os01g73770, Os02g45450, Os04g48350, Os06g03670, Os09g35010, and Os09g35030) were similarly expressed in response to chilling acclimation and cold stress and were co-expressed with genes involved in cold signalling, suggesting that these DREB1 homologs may be involved in the cold response in rice. The results presented here serve as a prelude towards understanding the function of rice homologs of DREB1 genes in cold-sensitive crops.  相似文献   

18.

Background

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.  相似文献   

19.
Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号