首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Components of purinergic signalling are expressed in the early embryo raising the possibility that ATP, ADP and adenosine may contribute to the mechanisms of embryonic development. We summarize the available data from four developmental models-mouse, chick, Xenopus and zebrafish. While there are some notable examples where purinergic signalling is indeed important during development, e.g. development of the eye in the frog, it is puzzling that deletion of single components of purinergic signalling often results in rather minor developmental phenotypes. We suggest that a key step in further analysis is to perform combinatorial alterations of expression of purinergic signalling components to uncover their roles in development. We introduce the concept that purinergic signalling could create novel morphogenetic fields to encode spatial location via the concentration of ATP, ADP and adenosine. We show that using minimal assumptions and the known properties of the ectonucleotidases, complex spatial patterns of ATP and adenosine can be set up. These patterns may provide a new way to assess the potential of purinergic signalling in developmental processes.  相似文献   

2.
Pathways regulating apoptosis during patterning and development   总被引:5,自引:0,他引:5  
The patterning and development of multicellular organisms require a precisely controlled balance between cell proliferation, differentiation and death. The regulation of apoptosis is an important aspect to achieve this balance, by eliminating unnecessary or mis-specified cells which, otherwise, may have harmful effects on the whole organism. Apoptosis is also important for the morphogenetic processes that occur during development and that lead to the sculpting of organs and other body structures. Here, we review recent progress in understanding how apoptosis is regulated during development, focusing on studies using Drosophila or Caenorhabditis elegans as model organisms.  相似文献   

3.
Somites, the segmented building blocks of the vertebrate embryo, arise one by one in a patterning process that passes wavelike along the anteroposterior axis of the presomitic mesoderm (PSM). We have studied this process in Xenopus embryos by analyzing the expression of the bHLH gene, Thylacine1, which is turned on in the PSM as cells mature and segment, in a pattern that marks both segment boundaries and polarity. Here, we show that this segmental gene expression involves a PSM enhancer that is regulated by retinoic acid (RA) signaling at two levels. RA activates Thylacine1 expression in rostral PSM directly. RA also activates Thylacine1 expression in the caudal PSM indirectly by inducing the expression of MKP3, an inhibitor of the FGF signaling pathway. RA signaling is therefore a major contributor to segmental patterning by promoting anterior segmental polarity and by interacting with the FGF signaling pathway to position segmental boundaries.  相似文献   

4.
5.
Recently canonical Wnt signaling in the ectoderm has been shown to be required for maintenance of the apical ectodermal ridge (AER) and for dorsoventral signaling. Using conditional gain- and loss-of-function beta-catenin alleles, we have studied the role of mesenchymal beta-catenin activity during limb development. Here, we show that loss of beta-catenin results in limb truncations due to a defect in AER maintenance. Stabilization of beta-catenin also results in truncated limbs, caused by a premature regression of the AER. Concomitantly, in these limbs, the expression of Bmp2, Bmp4 and Bmp7, and of the Bmp target genes Msx1, Msx2 and gremlin, is expanded in the mesenchyme. Furthermore, we found that the expression of Lmx1b, a gene exclusively expressed in the dorsal limb mesenchyme and involved in dorsoventral patterning, is reduced upon loss of beta-catenin activity and is expanded ventrally in gain-of-function limbs. However, the known ectodermal regulators Wnt7a and engrailed 1 are expressed normally. This suggests that Lmx1b is also regulated, in part, by a beta-catenin-mediated Wnt signal, independent of the non-canoncial Wnt7a signaling pathway. In addition, loss of beta-catenin results in a severe agenesis of the scapula. Concurrently, the expression of two genes, Pax1 and Emx2, which have been implicated in scapula development, is lost in beta-catenin loss-of-function limbs; however, only Emx2 is upregulated in gain-of-function limbs. Mesenchymal beta-catenin activity is therefore required for AER maintenance, and for normal expression of Lmx1b and Emx2.  相似文献   

6.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.  相似文献   

7.
Retinoic acid is a very potent teratogen and has also been implicated as an endogenous developmental signalling molecule in vertebrate embryos. One of the regions of the embryo reliably affected by exogenously applied RA is the hindbrain. In this paper, we describe in detail the hindbrain of Xenopus laevis embryos briefly treated with various levels of RA at gastrula stages. Such treatments lead to development of embryos with loss of anterior structures. In addition, RA has a general effect on rhombomere morphology and specific effects on the development of the anterior rhombomeres. This effect is demonstrated using neurofilament antibodies, HRP staining and in situ hybridisation using a probe for expression of the Xenopus Krox-20 gene. Anatomically it is evident that the development of the hindbrain normally anterior to the otocyst (rhombomeres 1-4) is abnormal following RA treatment. Sensory and motor axons of cranial nerves V and VII form a single root and the peripheral paths of V and VII and IX and X are also abnormal, as is the more anterior location of the otocyst. These anatomical changes are accompanied by changes in the pattern of expression for the gene XKrox-20, which normally expresses in rhombomeres 3 and 5, but is found in a single band in the anterior hindbrain of treated embryos which standardly fail to generate the normal external segmental appearance. The results are discussed in terms of both the teratogenic and possible endogenous roles of RA during normal development of the central nervous system. We conclude that low doses of RA applied during gastrulation have specific effects on the anterior Xenopus hindbrain which appear to be evolutionarily conserved in the light of similar recent findings in zebrafish.  相似文献   

8.
The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of the neuroblasts that form these neuromeres are quite well understood. Owing to the much higher complexity and hidden segmental organization of the brain, our understanding of its development is still rudimentary. Recent investigations on the expression and function of proneural genes, segmentation genes, dorsoventral-patterning genes and a number of other genes have provided new insight into the principles of neuroblast formation and patterning during embryonic development of the fly brain. Comparisons with the same processes in the trunk help us to understand what makes the brain different from the ventral nerve cord. Several parallels in early brain patterning between the fly and the vertebrate systems have become evident.  相似文献   

9.
Impulse activity and the patterning of connections during CNS development   总被引:33,自引:0,他引:33  
C J Shatz 《Neuron》1990,5(6):745-756
  相似文献   

10.
1. Previously determined logistic growth constants describing enterocyte microvillus development for a variety of species were analysed for possible interactions taking place between enterocyte migration rate (R) and the size of individual crypts (CD). 2. Microvillus elongation, the c-value of a logistic growth curve, was found to increase linearly with crypt depth and reciprocally with decreasing migration rate. The starting microvillus length of a basal crypt enterocyte, the a-value, also increased linearly with CD without being affected by R. 3. The mathematical equation describing the effects of CD and R on M, the maximal microvillus length, was M = 0.0016 CD + 0.073 CD/R, where M and CD are measured in micron and R in micron/hr. 4. The relationship found between R, CD and M is explained by suggesting that the crypt environment enables enterocytes to respond to an initiating signal imposed on cells as they begin to migrate onto villi. The possible nature of this putative signal is also discussed.  相似文献   

11.
The mesocotyl is an embryonic organ present in Poaceae that plays an important role in seedling emergence. The elongation of this first internode contributes decisively to the coleoptile reaching the soil surface. This study examines the process of mesocotyl elongation under controlled conditions in three caryopsis collection sites of Digitaria sanguinalis (L.) Scop. originating from Spain (Barcelona and Girona) and Argentina that may have two patterns of germination: radicular or coleoptilar. The frequencies of the two germination patterns varied significantly depending on the origin. Light inhibited the elongation of the mesocotyl drastically, resulting in maximum lengths of 3.5 mm, while in darkness the maximum length was 57 mm. The time-course evolution displayed under dark conditions was quite similar for all sites of origin and both germination patterns; the growth rate ranged from 0.23 to 0.30 mm h? 1. Within localities, caryopses with a coleoptilar pattern of germination showed a lower growth rate than those with a radicular one.  相似文献   

12.
In plants, specialized epidermal cells are arranged in semiordered patterns. In grasses such as maize, stomata and other specialized cell types differentiate in linear patterns within the leaf epidermis. A variety of mechanisms have been proposed to direct patterns of epidermal cell differentiation. One class of models proposes that patterns of cellular differentiation depend on the lineage relationships among epidermal cells. Another class of models proposes that epidermal patterning depends on positional information rather than lineage relationships. In the dicot epidermis, cell lineage is an important factor in the patterning of stomata, but not trichomes. In this study, the role of cell lineage in the linear patterning of stomata and bulliform cells in the maize leaf epidermis is investigated. Clones of epidermal cells in juvenile leaves were marked by excision of dSpm from gl15-m and in adult leaves by excision of Ds2 from bz2-m. These clones were analyzed in relation to patterns of stomata and bulliform cells, testing specific predictions of clonal origin hypotheses for the patterning of these cell types. We found that the great majority of clones analyzed failed to satisfy these predictions. Our results clearly show that lineage does not account for the linear patterning of stomata and bulliform cells, implying that positional information must direct the differentiation patterns of these cell types in maize.  相似文献   

13.
The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.  相似文献   

14.
15.
We propose a new mathematical model describing the establishment of maternal and gap proteins segmental patterning along the antero-posterior axis of the Drosophila early embryo. This model is based on experimental data and, without recurring to pre-defined activation thresholds, predicts qualitatively and quantitatively the expression patterns of the maternal and gap proteins, as well as the expression patterns of proteins resulting from mRNA ectopic expression and from some loss-of-function mutations. We conclude that the gap genes segmental patterning and consequent spatial organization of the embryo is determined by three main factors: (1) the initial positioning of the maternal bicoid and torso mRNA inside the egg, and subsequent diffusion of the corresponding proteins; (2) the structure of the genetic regulatory network; (3) the role of conservation laws in the establishment of steady and non-uniform spatial distributions of non-diffusing proteins.  相似文献   

16.
The Drosophila serum response factor (DSRF) is expressed in the precursors of the terminal tracheal cells and in the future intervein territories of the third instar wing imaginal disc. Dissection of the DSRF regulatory region reveals that a single enhancer element, which is under the control of the fibroblast growth factor (FGF)-receptor signalling pathway, is sufficient to induce DSRF expression in the terminal tracheal cells. In contrast, two separate enhancers direct expression in distinct intervein sectors of the wing imaginal disc. One element is active in the central intervein sector and is induced by the Hedgehog signalling pathway. The other element is under the control of Decapentaplegic and is active in two separate territories, which roughly correspond to the intervein sectors flanking the central sector. Hence, each of the three characterized enhancers constitutes a molecular link between a specific territory induced by a morphogen signal and the localized expression of a gene required for the final differentiation of this territory.  相似文献   

17.
Auxin and ethylene promote root hair elongation in Arabidopsis   总被引:9,自引:0,他引:9  
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutations etr1 and ein2 have a significant effect on root hair initiation. In this study, we found that mutants deficient in either auxin or ethylene response have a pronounced effect on root hair length. Treatment of wild-type, axr1 and etr1 seedlings with the synthetic auxin, 2,4-D, or the ethylene precursor ACC, led to the development of longer root hairs than untreated seedlings. Furthermore, axr1 seedlings grown in the presence of ACC produce ectopic root hairs and an unusual pattern of long root hairs followed by regions that completely lack root hairs. These studies indicate that both auxin and ethylene are required for normal root hair elongation.  相似文献   

18.
An intriguing question in developmental biology is how epidermal pattern formation processes are established and what are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the “mini organs” that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development as well as the influence of the body axes on hair patterning. Birth Defects Research (Part C) 87:263–272, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
《Developmental biology》1986,116(1):39-50
Spatiotemporal distribution of mitosis and anteroposterior body patterning during morphallactic development of palleal buds in the ascidian, Polyandrocarpa misakiensis, have been studied histologically in the presence or absence of 1.5 mM colchicine. Local cell division became evident at the proximal end of the inner, atrial epithelium of 1.5-day intact buds. This and other histological evidence showed that the primary cell activation took place at that region. In 2-day intact buds, mitotic activity spread out from the proximal end toward the lateral epithelial wall that had the lower (more anterior) positional information, referred to as the secondary cell activation. These primary and secondary activation sites were the presumptive domains of the gut and pharyngeal rudiments which specified the anteroposterior body pattern of a bud. Surgical manipulations to induce the reversal of bud polarity caused the conversion of the secondary activation site and of the pharyngeal domain, but had no effect on the primary cell activation. Thus, positional information in ascidians contributes to the formation of the pharynx by specifying the secodary cell activation site. On the other hand, a large discontinuity in positional information enhanced the primary cell activity. When two positional information gaps were constructed in a single bud, the primary cell activation occurred at two sites, resulting in an additional gut rudiment. The results of this study are discussed in the context of the possible basic mechanism that the budding in ascidians shares with epimorphic fields.  相似文献   

20.
Summry— Interactions between cells and extracellular matrix play a crucial role during development by controlling tissue remodelling and cell migration. Integrins are the main family of cell surface receptors for extracellular matrix. The knockout of integrin genes in mouse embryos has provided new insights into the function of these receptors during embryonic development and morphogenesis. The lethality observed either during embryonic life or after birth suggests that many integrins are essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号