首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5) and cytochrome b5 reductase (b5R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5R domains (CS/b5R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25–129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116QMDWLKLTRT126) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.  相似文献   

3.
The N-terminal half of the alpha-domain (residues 1 to 34) is more important for the stability of the acid-induced molten globule state of alpha-lactalbumin than the C-terminal half (residues 86 to 123). The refolding and unfolding kinetics of a chimera, in which the amino acid sequence of residues 1 to 34 was from human alpha-lactalbumin and the remainder of the sequence from bovine alpha-lactalbumin, were studied by stopped-flow tryptophan fluorescence spectroscopy. The chimeric protein refolded and unfolded substantially faster than bovine alpha-lactalbumin. The stability of the molten globule state formed by the chimera was greater than that of bovine alpha-lactalbumin, and the hydrophobic surface area buried inside of the molecule in the molten globule state was increased by the substitution of residues 1 to 34. Peptide fragments corresponding to the A- and B-helix of the chimera showed higher helix propensity than those of the bovine protein, indicating the contribution of local interactions to the high stability of the molten globule state of the chimera. Moreover, the substitution of residues 1-34 decreased the free energy level of the transition state and increased hydrophobic surface area buried inside of the molecule in the transition state. Our results indicate that local interactions as well as hydrophobic interactions formed in the molten globule state are important in guiding the subsequent structural formation of alpha-lactalbumin.  相似文献   

4.
The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD–NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors.  相似文献   

5.
Measles virus is a negative-sense, single-stranded RNA virus within the Mononegavirales order,which includes several human pathogens, including rabies, Ebola, Nipah, and Hendra viruses. The measles virus nucleoprotein consists of a structured N-terminal domain, and of an intrinsically disordered C-terminal domain, N(TAIL) (aa 401-525), which undergoes induced folding in the presence of the C-terminal domain (XD, aa 459-507) of the viral phosphoprotein. With in N(TAIL), an alpha-helical molecular recognition element (alpha-MoRE, aa 488-499) involved in binding to P and in induced folding was identified and then observed in the crystal structure of XD. Using small-angle X-ray scattering, we have derived a low-resolution structural model of the complex between XD and N(TAIL), which shows that most of N(TAIL) remains disordered in the complex despite P-induced folding within the alpha-MoRE. The model consists of an extended shape accommodating the multiple conformations adopted by the disordered N-terminal region of N(TAIL), and of a bulky globular region, corresponding to XD and to the C terminus of N(TAIL) (aa 486-525). Using surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and heteronuclear magnetic resonance, we show that N(TAIL) has an additional site (aa 517-525) involved in binding to XD but not in the unstructured-to-structured transition. This work provides evidence that intrinsically disordered domains can establish complex interactions with their partners, and can contact them through multiple sites that do not all necessarily gain regular secondary structure.  相似文献   

6.
The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His–Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser250, which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser250 substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser250 phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys268 in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels.  相似文献   

7.
The molecular mechanism of muscle contraction is based on the ATP-dependent cyclic interaction of myosin heads with actin filaments. Myosin head (myosin subfragment-1, S1) consists of two major domains, the motor domain responsible for ATP hydrolysis and actin binding, and the regulatory domain stabilized by light chains. Essential light chain-1 (LC1) is of particular interest since it comprises a unique N-terminal extension (NTE) which can bind to actin thus forming an additional actin-binding site on the myosin head and modulating its motor activity. However, it remains unknown what happens to the NTE of LC1 when the head binds ATP during ATPase cycle and dissociates from actin. We assume that in this state of the head, when it undergoes global ATP-induced conformational changes, the NTE of LC1 can interact with the motor domain. To test this hypothesis, we applied fluorescence resonance energy transfer (FRET) to measure the distances from various sites on the NTE of LC1 to S1 active site in the motor domain and changes in these distances upon formation of S1-ADP-BeFx complex (stable analog of S11-AТP state). For this, we produced recombinant LC1 cysteine mutants, which were first fluorescently labeled with 1,5-IAEDANS (donor) at different positions in their NTE and then introduced into S1; the ADP analog (TNP-ADP) bound to the S1 active site was used as an acceptor. The results show that formation of S1-ADP-BeFx complex significantly decreases the distances from Cys residues in the NTE of LC1 to TNP-ADP in the S1 active site; this effect was the most pronounced for Cys residues located near the LC1 N-terminus. These results support the concept of the ATP-induced transient interaction of the LC1 N-terminus with the S1 motor domain.  相似文献   

8.
A new Schiff base of gossypol with 5-methoxytryptamine (GSTR) and a new hydrazone of gossypol with dansylhydrazine (GHDH) have been synthesized and studied by Fourier transform infrared (FTIR), 1H and 13C nuclear magnetic resonance (NMR), ultraviolet-visible (UV-VIS), electrospray ionization-mass spectroscopy (ESI-MS) as well as the parametric method PM5. The spectroscopic methods have provided clear evidence that GSTR exists in chloroform solution as an enamine-enamine tautomer, whereas GHDH is present in chloroform as a N-imine-N-imine tautomer. The fluorescence spectra of both compounds indicate that their quantum yield of fluorescence is increased by one or two orders of magnitude compared to that of pure gossypol. The ESI-MS spectra of the 1:1 mixtures of GSTR or GHDH with formic acid have demonstrated that both compounds exist as protonated monomers in the gas phase, whereas GHDH can also exist in a stable protonated dimeric structure. The structures of the stable tautomers are calculated and visualized using the PM5 semiempirical method. The intra- and intermolecular hydrogen bonds within these structures are discussed.  相似文献   

9.
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号