首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In protein transport between organelles, interactions of v- and t-SNARE proteins are required for fusion of protein-containing vesicles with appropriate target compartments. Mammalian SNARE proteins have been observed to interact with NSF and SNAP, and yeast SNAREs with yeast homologues of NSF and SNAP proteins. This observation led to the hypothesis that, despite low sequence homology, SNARE proteins are structurally similar among eukaryotes. SNARE proteins can be classified into two groups depending on whether they interact with SNARE binding partners via conserved glutamine (Q-SNAREs) or arginine (R-SNAREs). Much of the published structural data available is for SNAREs involved in exocytosis (either in yeast or synaptic vesicles). This paper describes circular dichroism, Fourier transform infrared spectroscopy, and dynamic light scattering data for a set of yeast v- and t-SNARE proteins, Vti1p and Pep12p, that are Q-SNAREs involved in intracellular trafficking. Our results suggest that the secondary structure of Vti1p is highly alpha-helical and that Vti1p forms multimers under a variety of solution conditions. In these respects, Vti1p appears to be distinct from R-SNARE proteins characterized previously. The alpha-helicity of Vti1p is similar to that of Q-SNARE proteins characterized previously. Pep12p, a Q-SNARE, is highly alpha-helical. It is distinct from other Q-SNAREs in that it forms dimers under many of the solution conditions tested in our experiments. The results presented in this paper are among the first to suggest heterogeneity in the functioning of SNARE complexes.  相似文献   

3.
4.
Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing <20% sequence identity in their effector domains, they display a conserved core α-helical fold. Bioinformatic analyses suggest that the core fold occurs in ~44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures, and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N and C termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications, and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.  相似文献   

5.
A bioassay using Phytophthora infestans was developed to determine whether inhibitory proteins are induced in pathogen-inoculated plants. Using this bioassay, AP24, a 24-kilodalton protein causing lysis of sporangia and growth inhibition of P. infestans, was purified from tobacco plants inoculated with tobacco mosaic virus. Analysis of the N-terminal amino acid sequence identified AP24 as the thaumatin-like protein osmotin II. The sequence was also similar to NP24, the salt-induced protein from tomato. Subsequently, we purified a protein from tomato plants inoculated with P. infestans that had inhibitory activities identical to those of the tobacco AP24. The N-terminal amino acid sequence of this protein was also similar to those of osmotin and NP24. In general, both the tobacco and tomato AP24 caused lysis of sporangia at concentrations greater than 40 nanomolar and severely inhibited hyphal growth at concentrations greater than 400 nanomolar. Because both proteins were induced by pathogen inoculation, we discussed the possible involvement of these proteins as a plant defense mechanism.  相似文献   

6.
7.
Detailed analysis of the inheritance of molecular markers was performed in the oomycete plant pathogen Phytophthora infestans. Linkage analysis in the sexual progeny of two Dutch field isolates (cross 71) resulted in a high-density map containing 508 markers on 13 major and 10 minor linkage groups. The map showed strong clustering of markers, particularly of markers originating from one parent, and dissimilarity between the parental isolates on linkage group III in the vicinity of the mating-type locus, indicating a chromosomal translocation. A second genetic map, constructed by linkage analysis in sexual progeny of two Mexican isolates (cross 68), contained 363 markers and is thus less dense than the cross 71 map. For some linkage groups the two independent linkage maps could be aligned, but sometimes markers appeared to be in a different order, or not linked at all, indicating chromosomal rearrangements between genotypes. Graphical genotyping showed that some progeny contained three copies of a homologous linkage group. This trisomy was found for several linkage groups in both crosses. Together, these analyses suggest a genome with a high degree of flexibility, which may have implications for evolution of new races and resistance development to crop protection agents.  相似文献   

8.
In plants, the apoplast is a critical battlefield for plant-microbe interactions. Plants secrete defense-related proteins into the apoplast to ward off the invasion of pathogens. How microbial pathogens overcome plant apoplastic immunity remains largely unknown. In this study, we reported that an atypical RxLR effector PsAvh181 secreted by Phytophthora sojae, inhibits the secretion of plant defense-related apoplastic proteins. PsAvh181 localizes to plant plasma membrane and essential for P. sojae infection. By co-immunoprecipitation assay followed by liquid chromatography-tandem mass spectrometry analyses, we identified the soybean GmSNAP-1 as a candidate host target of PsAvh181. GmSNAP-1 encodes a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, which associates with GmNSF of the SNARE complex functioning in vesicle trafficking. PsAvh181 binds to GmSNAP-1 in vivo and in vitro. PsAvh181 interferes with the interaction between GmSNAP-1 and GmNSF, and blocks the secretion of apoplastic defense-related proteins, such as pathogenesis-related protein PR-1 and apoplastic proteases. Taken together, these data show that an atypical P. sojae RxLR effector suppresses host apoplastic immunity by manipulating the host SNARE complex to interfere with host vesicle trafficking pathway.  相似文献   

9.
10.
A new protein was observed in the electrophoretic gel band ofleaves of cultivar susceptible to Phytophthora infestans, whenthe DNA fraction of a resistant hybrid was applied to the leaves.The Rf value of this band coincided with that of the hybrid6 hr after die inoculation of a race of P. infestans to whichit was resistant. 1Present adress: Laboratory of Plant Pathology, College of Agriculture.Kyoto University, Kyoto, 606) Japan. 2His former family name was Nakao. (Received December 19, 1975; )  相似文献   

11.
Abstract

Phytophthora infestans is one of the most destructive pathogens of potato and causal agents of notorious disease late blight. Different chemicals are used to control the pathogen of late blight but the most commonly used is metalaxyl; its extensive use of has caused decreased sensitivity in the P. infestans population. The metalaxyl sensitivity of the Pakistani population of P. infestans is investigated in the present study. For this purpose, 178 isolates of P. infestans were obtained from the lesions of diseased potato leaves and stems, and samples were collected from the different potato-growing areas of Pakistan, where late blight is a problem. Sensitivity of the isolates of P. infestans was investigated by metalaxyl sensitivity test and with the help of test isolates were divided into three categories, i.e. sensitive, intermediate and resistant, based on their Co-efficient of mycelial growth inhibition (CMGI) values. During the study, highest percentage (50.17%) of resistant isolates was observed in the population of Punjab (zone 2), whereas the lower percentage (33.33%) was observed in the population of Swat valley (zone 6b). In the present study, it was discovered that P. infestans late blight-causing fungus has adopted more resistance against metalaxyl because of its wide use.  相似文献   

12.
13.
We have employed HPLC on reversed phase columns to analyse the major basic proteins from bull seminal vesicle secretion. The identification of proteins was achieved by comparison with authentic protein samples from bull seminal plasma as well as immunological characterisation using antisera directed against the latter proteins. The major basic proteins from bull seminal plasma: bull seminal proteinase inhibitor II (BUSI II), the seminal ribonuclease BS1, the protein P6 as well as the antimicrobial protein were also identified as the main constituents of the fraction of basic proteins derived from seminal vesicle secretion. FPLC using Mono S HR columns was also found to resolve the mixture of basic proteins and proved to be especially useful with respect to the isolation of the antimicrobial protein from basic proteins of seminal vesicle secretion. The identity of the antimicrobial protein from bull seminal plasma with the respective protein from seminal vesicle secretion was confirmed by amino-acid analysis and comparison of tryptic peptide patterns by HPLC. The antimicrobial protein was isolated from seminal vesicle secretion with a yield of 3 mg/ml of secretion.  相似文献   

14.
Adult mammalian pinealocytes contain several synaptic membrane proteins that are probably involved in the regulation of targeting and exocytosis of synaptic-like microvesicles (SLMVs). Immunohistochemical techniques have now demonstrated the spatiotemporal expression pattern of some of these proteins during rat pineal ontogenesis. Various synaptic vesicle trafficking proteins are detectable in proliferating epithelial cells of the pineal anlage even at embryonic day 17.5 (E 17.5), with the exception of syntaxin I (weakly expressed from E 19.5) and dynamin I (whose levels increase markedly during the first postnatal week). Numerous cells exhibiting strong immunoreactivity for synaptobrevin II, SNAP-25, synaptophysin, and munc-18-1 are distributed throughout the increasingly compact gland at E 19.5 and E 20.5; however, their number declines toward the proximal deep part of the organ. Groups of postmitotic cells situated at the surface of the developing gland exhibit marked immunoreactivity for the aforementioned proteins and lie close to the laminin-immunoreactive outer limiting basement membrane or to its remnants in regions of basement membrane dissolution. We also show that synthesis of vimentin and S-antigen seems to begin earlier during pineal development than previously recognized. Thus, synaptic vesicle trafficking proteins are the earliest molecular markers of pinealocyte differentiation known to date, being expressed well before the onset of rhythmic hormone secretion in the pineal gland, where they may play a role in morphogenetic events. Components of the extracellular matrix such as laminin may be critically involved in the upregulation of synaptic membrane protein expression. The dynamin immunostaining pattern indicates that SLMVs of pinealocytes begin to undergo regulated cycles of exo/endocytosis during postnatal week 1.  相似文献   

15.
When grown in a medium containing heat-stable potato tuber proteins, the oomycete Phytophthora infestans (Mont.) de Bary produces a set of exoproteinases active at neutral and mildly basic pH values. These extracellular proteinases have been shown by SDS-PAGE with the presence of gelatin to include at least six components differing in molecular weight. Inhibitory analysis and study of the effects of the enzymes on various synthetic substrates show that the culture liquid of P. infestans contains mainly serine proteinases specific to trypsin and subtilisin and metalloproteinases. Their activity is suppressed by proteinase-inhibitor proteins from potato tubers. It is suggested that P. infestans exoproteinases may be the metabolic target for natural proteinase inhibitors from potato.  相似文献   

16.
We have cloned genes of Phytophthora infestans, the causal agent of potato late blight, that are activated shortly before the onset of invasion of the host tissue. The three genes isolated appear to be arranged in a genomic cluster and belong to a small polymorphic gene family. A conspicuous feature of the deduced proteins is an internal octapeptide repeat with the consensus sequence TTYAP TEE. Because of this structural motif, these novel P. infestans proteins were named Car (Cyst-germination-specific acidic repeat) proteins. One of the genes, car90, codes for 1,489 amino acids including 120 octapeptide tandem repeats. Car proteins are transiently expressed during germination of cysts and formation of appressoria and are localized at the surface of germlings. The structural motif of tandemly repeated oligopeptides also occurs in a prominent class of proteins, the mucins, from mammals. The P. infestans Car proteins share 51% sequence homology with the tandem repeat region of a subfamily of human mucins. According to the physiological functions ascribed to mucins, we suggest that Car proteins may serve as a mucous cover protecting the germling from desiccation, physical damage, and adverse effects of the plant defense response and may assist in adhesion to the leaf surface.  相似文献   

17.
18.
? Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. ? The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. ? PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. ? CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号