首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted in vitro to study the regulation of progesterone production in chicken granulosa cells by homologous basal lamina isolated from preovulatory follicles of chicken ovary. The majority of components of the basal lamina (90–95% by weight) were solubilized with guanidine-HCl (and designated fraction 1); the remaining components were solubilized with β-mercaptoethanol containing guanidine-HCl (and designated fraction 2). The ability of fraction 1 to regulate progesterone production in granulosa cells obtained from the largest (F1, mature), third largest (F3, growing), fifth to seventh largest (F5–7, growing) follicles and a pool of small yellow follicles (SYF, immature) of chicken ovary was assessed. Granulosa cells isolated from SYF follicles were in the least differentiated (undifferentiated) and those obtained from F1 follicles were in the most differentiated state. The ability of fraction 1 to regulate progesterone production by chicken granulosa cells was influenced both by the state of cell differentiation and the form of the matrix material (whether solid or liquid). When fraction 1 was added as liquid to the incubation mixture, it promoted progesterone production by granulosa cells at all stages of differentiation; however, it caused a greater relative increase in the amount of progesterone produced by undifferentiated (SYF) and differentiating (F3) granulosa cells than by differentiated (F1) ones. In the presence of the liquid-form of fraction 1, luteinizing hormone (LH) stimulated progesterone production in differentiated (F1) and differentiating (F5–7) granulosa cells. Similarly, follicle-stimulating hormone (FSH) stimulated progesterone production by differentiating (F3) and undifferentiated (SYF) granulosa cells in the presence of the liquid-form of fraction 1 protein. In culture wells that had been pre-coated with fraction 1 (solid-form), progesterone production by less differentiated (SYF, F5–7) granulosa cells was enhanced, whereas progesterone production by differentiated (F1) cells was reduced. The solid-form of fraction 1 augmented LH-stimulated progesterone production by less differentiated (F5–7) granulosa cells however, it attenuated LH-induced progesterone production in differentiated (F1) cells. FSH-promoted progesterone production in granulosa cells from immature follicles (SYF) was augmented by solid-form of fraction 1 whereas the effect of FSH on cells obtained from older follicle (F3) was suppressed by solid-form of fraction 1. In experiments in which gonadotropin action was attenuated by solid-form of fraction 1, the amount of progesterone produced in the presence of maximally inhibiting concentrations of fraction 1 protein was greater than control values (no fraction 1, no gonadotropin). These results show that basal lamina of the ovarian follicle can regulate progesterone production by granulosa cells. The data demonstrate that the interactions between the components of basal lamina and LH or FSH on granulosa cell function were dependent on the stage of follicular development and were influenced by the form of the matrix material. It is concluded that the basal lamina of the chicken ovarian follicle is biologically active and regulates granulosa cell function.  相似文献   

2.
Patch-clampexperiments were conducted to study the effects of basal lamina(basement membrane) of preovulatory chicken ovarian follicle onmembrane currents in differentiated chicken granulosa cells in ahomologous system. The membrane capacitance (measure of total membranearea) was smaller in cells cultured on intact basal lamina than that ofcontrol cells. The granulosa cells expressed outward and two inwardcurrents. A small fraction of the cells (3%) expressed only atransient fast-activating and -inactivating inward current carried byCa2+. The majority of the cells, however, expressed aslowly activating and inactivating inward current (carried byCl) that was superimposed on the transientCa2+ current. All cells expressed an outward currentcharacteristic of the delayed-rectifier K+ current. Theremoval of extracellular Ca2+ led to elimination of theslow inward Cl current, indicating that it is aCa2+-dependent Cl current. Both peakamplitude and current density of the inward Cl currentwere significantly lower in cells cultured on freshly isolated intactbasal lamina (or basal lamina stored at 4°C for 12 mo) than those ofcontrol cells; however, basal lamina had no significant effect on thedensity of the outward current. Similar to the observations made forintact basal lamina, solubilized basal lamina suppressed the inwardCl current in differentiated granulosa cells. These datashow that homologous basal lamina modulates aCa2+-dependent Cl current in differentiatedgranulosa cells. These findings provide a partial explanation for themechanisms that subserve the reported effects of basal lamina (basementmembrane) on the metabolic functions of differentiated granulosa cells.

  相似文献   

3.
In the ovarian follicle, anti-Müllerian hormone (Amh) mRNA is expressed in granulosa cells from primary to preovulatory stages but becomes restricted to cumulus cells following antrum formation. Anti-Müllerian hormone regulates follicle development by attenuating the effects of follicle stimulating hormone on follicle growth and inhibiting primordial follicle recruitment. To examine the role of the oocyte in regulating granulosa cell Amh expression in the mouse, isolated oocytes and granulosa cells were co-cultured and Amh mRNA levels were analysed by real-time RT-PCR. Expression in freshly isolated granulosa cells increased with preantral follicle development but was low in the cumulus and virtually absent in the mural granulosa cells of preovulatory follicles. When preantral granulosa cells were co-cultured with oocytes from early preantral, late preantral or preovulatory follicles, and when oocytes from preovulatory follicles were co-cultured with cumulus granulosa cells, Amh expression was increased at least 2-fold compared with granulosa cells cultured alone. With oocytes from preantral but not preovulatory follicles, this was a short-range effect only observed with granulosa cells in close apposition to oocytes. We conclude that stage-specific oocyte regulation of Amh expression may play a role in intra- and inter-follicular coordination of follicle development.  相似文献   

4.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

5.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase: EC 1.1.1.34) was measured in a microsomal preparation of the granulosa of rapidly growing ovarian follicles of laying hens in the late preovulatory period (2-3 h before expected ovulation). The specific activity of the enzyme was measured in the five largest (F1-F5) preovulatory follicles, F1 being the follicle destined to ovulate first. Enzyme activity increased concomitantly with follicle size. The apparent Km of the enzyme decreased 60-80% from the smallest to the largest preovulatory follicle. There was no significant change in the Vmax during follicle development. Although our results have demonstrated the presence of HMG/CoA reductase in chicken granulosa cells and the progressive increase of its activity with follicular maturation, the quantitative significance of de-novo synthesized cholesterol as steroid hormone precursor remains to be ascertained.  相似文献   

6.
In the mammalian ovary, oocytes are contained within ovarian follicles. These consist in an oocyte surrounded by supporting cells: an inner layer of granulosa cells and an outer layer of thecal cells separated by a basal lamina. At any one time, a developing cohort of follicles exists, from which only a small species-specific number are selected for continued development towards ovulation, with the remainder dying by follicular atresia. Here, we use in vitro methods to study interactions between two follicles in culture (follicle co-cultures). We show that, when two individual follicles are grown together in culture, cells and cellular processes migrate from the outer thecal layer of one follicle to the thecal layer of the other co-cultured follicle. These cells are identified as a mixed population containing primarily endothelial but also neuronal cells. Both are able to migrate through the ovarian interstitum, making contact with the basal lamina of other follicles and with similar cells from these other follicles. Networks of such cells might be involved in interfollicular communication and in the coordination of follicle selection for ovulation.  相似文献   

7.
Recent biochemical studies have suggested that apoptotic cell death is the molecular mechanism underlying the degeneration of ovarian follicles during atresia. Using a sensitive autoradiographic method for the detection of DNA fragmentation, we studied apoptosis in ovarian granulosa cells or intact follicles placed in serum-free culture as model systems to elucidate the hormonal regulation of atresia. Immature rats (25 days old) were primed for 2 days with 10 IU equine CG to induce a homogeneous population of mature preovulatory follicles. Granulosa cells isolated from these follicles contained predominantly intact high mol wt DNA. However, a time-dependent, spontaneous onset of internucleosomal DNA fragmentation characteristic of apoptotic cell death occurred in granulosa cells during culture. Treatment of granulosa cells with epidermal growth factor (EGF), transforming growth factor-alpha (TGF alpha), or basic fibroblast growth factor (bFGF) inhibited the spontaneous onset of apoptotic DNA cleavage found during culture by 40-60%. In contrast, insulin-like growth factor I, insulin, TGF beta and tumor necrosis factor-alpha were ineffective. Likewise, activation of the protein kinase A or C pathways with forskolin or phorbol 12-myristate 13-acetate, respectively, did not prevent the onset of DNA fragmentation, although inclusion of a tyrosine kinase inhibitor (genistein) completely blocked the ability of EGF, TGF alpha, and bFGF to suppress apoptosis in granulosa cells. Similar to cultured granulosa cells, a spontaneous onset of apoptosis was also observed to occur in isolated preovulatory follicles during culture. Furthermore, treatment of follicles with EGF or bFGF inhibited the spontaneous initiation of apoptosis, and the suppressive effects of these growth factors were also attenuated by co-treatment with genistein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Granulosa and theca interna cells were isolated from bovine preovulatory ovarian follicles. They were cultured separately but in the same conditions of cell culture. Both cell types, grown as monolayers, were investigated histochemically with special regard to the activity of several hydroxysteroid dehydrogenases: delta53betaOH-SDH, 17betaOH-SDH, 20alphaOH-SDH and G6P-DH. Bovine granulosa and theca interna cells during in vitro culture showed high activity of delta53betaOH-SDH and G6P-DH, the enzymes essential to progesterone biosynthesis. Enzyme pattern of cultured cells indicated continuation in vitro of luteinization, which in the normal preovulatory follicle of the bovine ovary begins prior to ovulation. There was investigated as well the influence of single doses of gonadotrophic hormones and estradiol on growth, lipid contents and enzymic activity of cultured in vitro bovine granulosa and theca interna cells.  相似文献   

9.
In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.  相似文献   

10.
As a result of searching recently available chicken (ch) expressed sequence tag databases, a new Tumor Necrosis Factor Receptor Super Family (TNFRSF) member with similarity to the murine (m) TNFRSF23 decoy receptor (DcR) has been identified. However, by comparison with the mTNFRSF23, there exist at least two splice variants of chTNFRSF23, one of which includes an intracellular death domain (TNFRSF23.v1) characteristic of death receptors, and the other with a truncated cytoplasmic domain of a DcR (named TNFRSF23.v2). These two splice variants of chTNFRSF23 display differential patterns of mRNA expression across various hen tissues, with the highest levels observed within reproductive tissues. More specifically, TNFRSF23.v1 is most highly expressed in preovulatory follicle granulosa cells in the ovary, whereas TNFRSF23.v2 mRNA is found at highest levels in ovarian stromal tissue. Primary culture experiments with granulosa cells determined that expression of TNFRSF23.v1 mRNA was decreased by protein kinase A signaling and enhanced by transforming growth factor (TGF) alpha treatment. Interestingly, TGFbeta1 and signaling via protein kinase C also enhanced levels of TNFRSF23.v1 expression but only in undifferentiated granulosa cells from prehierarchal follicles. Based on patterns of mRNA expression and its endocrine/paracrine regulation, we predict that ovarian chTNFRSF23 represents a modulator of granulosa cell survival and/or differentiation. Finally, the characterization of these receptor variants is of considerable interest from an evolutionary perspective in that they provide additional evidence to support a continuing divergence of TNFRSF members throughout vertebrate evolution.  相似文献   

11.
Increasing the fat content of the diet increases the proportion of large triglyceride-rich (TGR) lipoproteins (portomicrons) in laying-hen plasma, but has no effect on the size distribution of yolk TGR-lipoproteins. Electromicrographs of the ovarian follicle walls of hens fed a high-fat diet show the presence of numerous portomicron-like particles in the lumen of the thecal capillaries, in the pericapillary spaces and in the theca interna, but portomicrons were absent from the basal lamina, between the granulosa cells and in newly deposited yolk. Most of the lipoprotein lipase activity in the ovarian follicles is associated with the granulosa cells, but total activity in the follicle is very small compared to heart or adipose tissue. The results indicate that the ovarian follicle of the laying-hen specifically excludes lipoproteins of intestinal origin from yolk, most probably because they are too large to pass through the connective tissue matrix of the basal lamina. The low lipoprotein lipase activity of the ovarian follicle, together with its distribution within the follicle wall, indicates that the ovarian follicles make little contribution to catabolism of circulating portomicrons.  相似文献   

12.
Summary To identify and describe ovarian follicles committed to undergo follicular degeneration (atresia), immature rats were primed with pregnant mare serum gonadotropin (PMSG). After PMSG treatment, preovulatory follicles develop but subsequently degenerate. Prior to the appearance of pyknotic nuclei (Stage I of atresia), degenerative changes were observed in focal areas of the granulosa cell layer. These changes include blebbing of the cytoplasm and alterations in the shape of the granulosa cells. The appearance of these degenerative changes coincides with a decrease in ovarian concentrations of estradiol and testosterone. Since estrogens and androgens maintain the follicle, the decline in estradiol and testosterone could be responsible for the further degenerative alterations that lead to complete deterioration of the preovulatory follicle. In Stage I atretic follicles, lysosome-derived autophagic vacuoles develop and macrophages invade both the thecal and granulosa cell layers. The combined actions of the autophagic vacuoles and macrophages could destroy both the granulosa-cell and thecal layers and thereby transform the preovulatory follicle into an ovarian cyst.  相似文献   

13.
The study was performed to determine the structure and steroidogenic activity of granulosa cells derived from the germinal disc region, proximal region and distal region of the largest preovulatory ovarian follicle (F1) of the hen. The study was carried out on 34 Hy-Line Brown egg-laying hens aged 40 weeks. Morphology of the granulosa cells was studied by histological assessment and scanning electron microscopy. Moreover, the level of P4, histochemical activity of 3beta-HSD and expression of 3beta-HSD gene mRNA in granulosa cells of F1 follicle were determined. The findings indicate that the morphology and steroidogenic activity of the granulosa layer in F1 preovulatory ovarian follicle are associated with the region of the follicle. This is consistent with earlier studies. In the germinal disc region the granulosa cells form a multilayer while in the proximal and distal regions granulosa cells form a single layer. Analysis of P4 concentration revealed that its level in granulosa cells was markedly reduced closer to the germinal disc. Moreover, our study demonstrates for the first time the lower histochemical activity of 3beta-HSD and expression of 3beta-HSD mRNA in granulosa cells from the germinal disc region compared with the proximal and distal region.  相似文献   

14.
The purpose of this study was to determine if the granulosa cells of the small preovulatory follicles of the domestic hen are a target tissue for follicle-stimulating hormone (FSH). The third largest (F3), fourth largest (F4), and fifth largest (F5) follicles were removed from hens at 20, 12, 6 and 2 h before ovulation of the F1 follicle. Basal, FSH- and luteinizing hormone (LH)-stimulable adenylyl cyclase (AC) activities were measured in the granulosa cells. Isolated granulosa cells of the F5 follicle, obtained 20 h before ovulation of the F1 follicle, were incubated with ovine (o) or turkey (t) FSH and progesterone (P4) was assayed in the medium. Basal AC activity was similar for F5, F4 and F3 granulosa cells except for an increase (P less than 0.01) in F3 follicles removed 2 h before ovulation of the F1 follicle. The FSH-stimulable AC activity of F5, F4 and F3 granulosa cells was elevated over basal (P less than 0.01). The greatest responsiveness was seen in the F5 follicle and the least in the F3 follicle. LH-stimulable AC activity was absent in the F5 follicle but present in the F4 and F3 follicles with the greater responsiveness in the F3 follicle. Isolated F5 granulosa cells secreted significant amounts of P4 in response to oFSH and tFSH. The data indicate that: 1) FSH stimulates the AC system of granulosa cells of the smaller preovulatory follicles (F5 greater than F4 greater than F3) while LH stimulates the AC system of granulosa cells of the larger follicles (F3 greater than F4), and 2) FSH promotes P4 production by granulosa cells of F5 follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The granulosa cell secretes a protein (follicle regulatory protein: FRP) that affects the responsiveness of other follicles to gonadotropin stimulation. This protein was purified, partially characterized, and rabbit antisera as well as monoclonal antibodies were prepared against FRP. Fixed sections of porcine ovaries were prepared on slides and then incubated with the monoclonal antibody or polyclonal antisera and then incubated with either biotinylated mouse IgM or rabbit IgG antisera, respectively. These sections were then incubated with avidin conjugated to horseradish peroxidase, followed by substrate. Staining with both the monoclonal antibody and the antisera was present in the cytoplasm of granulosa cells of small- or medium-sized antral follicles. Staining distribution was localized preferentially to cells near the basal lamina; the antral granulosa cells of viable follicles did not stain. Neither primordial follicles nor pre-antral follicles (less than 300 microns in diameter) showed any positive staining. Thecal cells were not stained in follicles less than 5 mm in diameter, whereas some large follicles (greater than 5 mm) contained staining in the theca. In the latter, specific granulosa staining was only weakly positive with the polyclonal antibody and negative with the monoclonal antibody. Atretic follicles contained significant staining of all epithelial cells adjacent to the basal lamina by both the monoclonal and polyclonal antibody preparations. Staining of the luteal ovary by the monoclonal antibody was limited to the large luteal cells. These findings suggest that FRP is produced by the granulosa cells of porcine follicles at the stage of maturation corresponding to 0.5 mm in diameter. As the viable follicle increases in size, production of FRP in the granulosa is reduced below the detectable level when the follicle exceeds 5 mm in diameter. The main source of FRP during the luteal phase is the large cell of the corpus luteum.  相似文献   

16.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

17.
Different morphological phenotypes of follicular basal lamina and of membrana granulosa have been observed. Ten preantral follicles (< 0. 1 mm), and 17 healthy and six atretic antral follicles (0.5-12 mm in diameter) were processed for light and electron microscopy to investigate the relationship the between follicular basal lamina and membrana granulosa. Within each antral follicle, the shape of the basal cells of the membrana granulosa was uniform, and either rounded or columnar. There were equal proportions of follicles 相似文献   

18.
Summary Porcine thyroid cells isolated by dispase treatment were cultured in either (a) Matrigel, (b) agarose with the addition of different combinations of basic fibroblast growth factor and laminin, or (c) on agarose-coated dishes. The formation of follicles and the presence of a basal lamina was investigated by routine electron microscopy of Araldite-embedded material and by light and electron microscopical immunocytochemical detection of the basal lamina components, laminin and collagen type IV. After 10 days of culture in Matrigel or agarose, a basal lamina-like structure surrounded most follicles. Follicles of cells growing in agarose and overlaid with a medium containing thyrotropin and fibroblast growth factor showed a fluorescent band at the basal side of the follicles after immunocytochemical staining with anti-laminin and anti-collagen antibodies. Routine electron microscopy showed that a basal lamina-like structure lined the outside of the follicle. This structure could be subdivided into a lamina lucida and a lamina densa. Electron microscopical immunogold labelling revealed that immunologically detectable laminin was confined to the lamina densa. These findings suggest that even in the absence of basal lamina components in the culture medium, thyroid cells are able to form follicles with a regular basal lamina when they are cultured in a three-dimensional environment.  相似文献   

19.
We have cloned and sequenced cDNAs corresponding to the complete coding regions of the chicken homologues to mammalian caspase-3 and caspase-6. Both caspases are included among members of the cysteine protease (caspase) family that are most closely identified with mediating apoptosis. The deduced amino acid sequences for chicken caspase-3 and -6 show 65% and 68% identity with the respective human sequences, with complete conservation found within the QACRG active peptide region. Both caspase-3 and -6 are widely expressed within various tissues from the hen. Within the ovary, levels of caspase-3 and caspase-6 mRNA and protein do not change significantly in theca tissue during follicle development. On the other hand, procaspase-3 and -6 protein levels are elevated by 2- to 5-fold in preovulatory, compared to prehierarchal (6- to 8-mm diameter), follicle granulosa cells. Nevertheless, the function of this family of cell death-inducing proteins requires activation of the proenzyme caspase, which occurs after cleavage at predictable sites within the N-terminal domain. Accordingly, it was determined that okadaic acid, a pharmacologic inducer of apoptotic cell death in cultured apoptosis-resistant, preovulatory follicle granulosa cells, induced both caspase-3- and caspase-6-like activity within 8-16 h of treatment. By comparison, spontaneous apoptotic cell death that occurs in apoptosis-sensitive, prehierarchal follicle granulosa cells after short-term suspension culture is accompanied by a more rapid increase (within 2 h) in both caspase-3- and -6-like activity. Treatment with 8-bromo-cAMP, which has previously been shown to attenuate, or at least slow, the onset of apoptosis in prehierarchal follicle granulosa cells, mitigates this suspension culture-induced increase in caspase activity. While the present results provide further support for the relationship between caspase activation and apoptotic cell death in hen granulosa cells, the molecular ordering of enzymatic events and the caspase-specific substrates remain to be elucidated.  相似文献   

20.
Ovulation, the release of the oocyte from the ovarian follicle, is initiated by the luteinizing hormone surge. It is clear that highly controlled degradation of the follicle and ovarian wall is required for passage of the oocyte and accompanying cumulus cells from the follicle, but the mechanism has not yet been elucidated. Here we show that cumulus oocyte complexes (COCs) adopt transient adhesive, migratory, and matrix-invading capacities at the time of ovulation. We characterized cell adhesion, migration, and invasion in preovulatory and postovulatory mouse COCs collected over a time course post-human chorionic gonadotropin (hCG) administration. Adhesion of dispersed cumulus cells and intact COCs to extracellular matrix proteins present in the ovarian wall (collagens, laminin, and fibronectin) increased significantly after hCG treatment and declined immediately after ovulation. Cumulus cell migration was low in unexpanded, equine chorionic gonadotropin-only treated COCs, but increased 4, 8, and 10 h post-hCG, reaching a peak at 12 h post-hCG that coincided with ovulation. The ability of cumulus cells to migrate was rapidly diminished in COCs isolated from the oviduct within 2 h postovulation. Cell migration was cumulus cell specific and was not observed in granulosa cells. Invasion through three-dimensional collagen I and matrigel barriers by preovulatory expanded COCs was equivalent to that of a known invasive breast cancer cell line (MB-231). Cumulatively, these results demonstrate that cumulus cells in the expanded COC transition to an adhesive, motile, and invasive phenotype in the periovulatory period that may be required for successful release of the oocyte from the ovary at ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号