首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is believed to act as an intercellular signal that regulates synaptic plasticity in mature neurons. We now report that NO also regulates the proliferation and differentiation of mouse brain neural progenitor cells (NPCs). Treatment of dissociated mouse cortical neuroepithelial cluster cell cultures with the NO synthase inhibitor L-NAME or the NO scavenger hemoglobin increased cell proliferation and decreased differentiation of the NPCs into neurons, whereas the NO donor sodium nitroprusside inhibited NPC proliferation and increased neuronal differentiation. Brain-derived neurotrophic factor (BDNF) reduced NPC proliferation and increased the expression of neuronal NO synthase (nNOS) in differentiating neurons. The stimulatory effect of BDNF on neuronal differentation of NPC was blocked by L-NAME and hemoglobin, suggesting that NO produced by the latter cells inhibited proliferation and induced neuronal differentiation of neighboring NPCs. A similar role for NO in regulating the switch of neural stem cells from proliferation to differentiation in the adult brain is suggested by data showing that NO synthase inhibition enhances NPC proliferation and inhibits neuronal differentiation in the subventricular zone of adult mice. These findings identify NO as a paracrine messenger stimulated by neurotrophin signaling in newly generated neurons to control the proliferation and differentiation of NPC, a novel mechanism for the regulation of developmental and adult neurogenesis.  相似文献   

2.
3.
4.
Members of the transforming growth factor (TGF)‐β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF‐β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF‐β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF‐β1 under a tetracycline regulatable Ca‐Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF‐β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF‐β1 signalling in adult NPCs. The results demonstrate that TGF‐β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF‐β1 in ageing and neurodegenerative diseases, TGF‐β1 signalling presents a molecular target for future interventions in such conditions.  相似文献   

5.
Neurogenesis occurs in the adult mammalian brain and may play roles in learning and memory processes and recovery from injury, suggesting that abnormalities in neural progenitor cells (NPC) might contribute to the pathogenesis of disorders of learning and memory in humans. The objectives of this study were to determine whether NPC proliferation, survival and neuronal differentiation are impaired in a transgenic mouse model of Alzheimer's disease (AD), and to determine the effects of the pathogenic form of amyloid beta-peptide (Abeta) on the survival and neuronal differentiation of cultured NPC. The proliferation and survival of NPC in the dentate gyrus of the hippocampus was reduced in mice transgenic for a mutated form of amyloid precursor protein that causes early onset familial AD. Abeta impaired the proliferation and neuronal differentiation of cultured human and rodent NPC, and promoted apoptosis of neuron-restricted NPC by a mechanism involving dysregulation of cellular calcium homeostasis and the activation of calpains and caspases. Adverse effects of Abeta on NPC may contribute to the depletion of neurons and cognitive impairment in AD.  相似文献   

6.
Toll-like receptors modulate adult hippocampal neurogenesis   总被引:2,自引:0,他引:2  
Neurogenesis - the formation of new neurons in the adult brain - is considered to be one of the mechanisms by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes. The mechanisms underlying the regulation of neurogenesis are largely unknown. Here, we show that Toll-like receptors (TLRs), a family of highly conserved pattern-recognizing receptors involved in neural system development in Drosophila and innate immune activity in mammals, regulate adult hippocampal neurogenesis. We show that TLR2 and TLR4 are found on adult neural stem/progenitor cells (NPCs) and have distinct and opposing functions in NPC proliferation and differentiation both in vitro and in vivo. TLR2 deficiency in mice impaired hippocampal neurogenesis, whereas the absence of TLR4 resulted in enhanced proliferation and neuronal differentiation. In vitro studies further indicated that TLR2 and TLR4 directly modulated self-renewal and the cell-fate decision of NPCs. The activation of TLRs on the NPCs was mediated via MyD88 and induced PKCalpha/beta-dependent activation of the NF-kappaB signalling pathway. Thus, our study identified TLRs as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.  相似文献   

7.
8.
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53‐mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53‐mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non‐centrosomal protein SMC5 is also TP53‐dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.  相似文献   

9.
ObjectiveMicroglia, the prototypical innate immune cells of the central nervous system (CNS), are highly plastic and assume their phenotypes dependent on intrinsically genetic, epigenetic regulation or extrinsically microenvironmental cues. Microglia has been recognized as key regulators of neural stem/progenitor cells (NSPCs) and brain functions. Chromatin accessibility is implicated in immune cell development and functional regulation. However, it is still unknown whether and how chromatin remodelling regulates the phenotypic plasticity of microglia and exerts what kind of effects on NSPCs.MethodsWe investigated the role of chromatin accessibility in microglia by deleting chromatin remodelling gene Arid1a using microglia‐specific Cx3cr1‐cre and Cx3cr1‐CreERT2 mice. RNA‐seq and ATAC‐seq were performed to dissect the molecular mechanisms. In addition, we examined postnatal M1/M2 microglia polarization and analysed neuronal differentiation of NSPCs. Finally, we tested the effects of microglial Arid1a deletion on mouse behaviours.ResultsIncreased chromatin accessibility upon Arid1a ablation resulted in enhanced M1 microglial polarization and weakened M2 polarization, which led to abnormal neurogenesis and anxiety‐like behaviours. Switching the polarization state under IL4 stimulation could rescue abnormal neurogenesis, supporting an essential role for chromatin remodeler ARID1A in balancing microglial polarization and brain functions.ConclusionsOur study identifies ARID1A as a central regulator of microglia polarization, establishing a mechanistic link between chromatin remodelling, neurogenesis and mouse behaviours, and highlights the potential development of innovative therapeutics exploiting the innate regenerative capacity of the nervous system.

Microglia are thought to play an essential role in differentiation and maturation of neural precursor cells into neurons. As the prototypical innate immune cells of the central nervous system (CNS), the balance of microglial polarization is regulated by genetic or epigenetic modulators. Our study showed enhancement of chromatin accessibility by the chromatin remodelling gene Arid1a deletion led to abnormal development of microglia, which shows heightened M1 microglial polarization and weakened M2 polarization. In addition, irregular polarization led to abnormal neurogenesis with a significant decrease of neural stem/progenitor cell differentiation into neurons.  相似文献   

10.

Background

Activin A is a protein that participates principally in reproductive functions. In the adult brain, Activin is neuroprotective, but its role in brain development is still elusive.

Methodology/Principal Findings

We studied if Activin A influences proliferation, differentiation or survival in rat cerebrocortical neural progenitor cells (NPC). After stimulation of NPC with Activin A, phosphorylation and nuclear translocation of Smad 2/3 were induced. In proliferating NPC, Activin produced a significant decrease in cell area and also a discrete increase in the number of neurons in the presence of the mitogen Fibroblast Growth Factor 2. The percentages of cells incorporating BrdU, or positive for the undifferentiated NPC markers Nestin and Sox2, were unchanged after incubation with Activin. In differentiating conditions, continuous treatment with Activin A significantly increased the number of neurons without affecting astroglial differentiation or causing apoptotic death. In cells cultured by extended periods, Activin treatment produced further increases in the proportion of neurons, excluding premature cell cycle exit. In clonal assays, Activin significantly increased neuronal numbers per colony, supporting an instructive role. Activin-induced neurogenesis was dependent on activation of its receptors, since incubation with the type I receptor inhibitor SB431542 or the ligand-trap Follistatin prevented neuronal differentiation. Interestingly, SB431542 or Follistatin by themselves abolished neurogenesis and increased astrogliogenesis, to a similar extent to that induced by Bone Morphogenetic Protein (BMP)4. Co-incubation of these Activin inhibitors with the BMP antagonist Dorsomorphin restored neuronal and astrocytic differentiation to control levels.

Conclusions

Our results show an instructive neuronal effect of Activin A in cortical NPC in vitro, pointing out to a relevant role of this cytokine in the specification of NPC towards a neuronal phenotype.  相似文献   

11.
12.
MicroRNAs (miRNAs) are important regulators of mouse brain development. However, their precise roles in this context remain to be elucidated. Through screening of expression profiles from a miRNA microarray and experimental analysis, we show here that miR‐15b controls several aspects of cortical neurogenesis. miR‐15b inhibits cortical neural progenitor cell (NPC) proliferation and promotes cell‐cycle exit and neuronal differentiation. Additionally, miR‐15b expression decreases the number of apical progenitors and increases basal progenitors in the VZ/SVZ. We also show that miR‐15b binds to the 3′ UTR of TET3, which plays crucial roles during embryonic development by enhancing DNA demethylation. TET3 promotes cyclin D1 expression, and miR‐15b reduces TET3 expression and 5hmC levels. Notably, TET3 expression rescues miR‐15b‐induced impaired NPC proliferation and increased cell‐cycle exit in vivo. Our results not only reveal a link between miRNAs, TET, and DNA demethylation but also demonstrate critical roles for miR‐15b and TET3 in maintaining the NPC pool during early neocortical development.  相似文献   

13.
14.
Niemann-Pick type C disease (NPC) is a neurodegenerative and lipid storage disorder for which no effective treatment is known. We previously reported that neural stem cells derived from NPC1 mice showed impaired self-renewal and differentiation. We examined whether valproic acid (VPA), a histone deacetylase inhibitor, could enhance neuronal differentiation and recover defective cholesterol metabolism in neural stem cells (NSCs) from NPC1-deficient mice (NPC1(-/-)). VPA could induce neuronal differentiation and restore impaired astrocytes in NSCs from NPC1(-/-) mice. Importantly, an increasing level of cholesterol within NSCs from NPC1(-/-) mice could be reduced by VPA. Moreover, essential neurotrophic genes (TrkB, BDNF, MnSoD, and NeuroD) were up-regulated through the repression of the REST/NRSF and HDAC complex by the VPA treatment. Up-regulated neurotrophic genes were able to enhance neural differentiation and cholesterol homeostasis in neural stem cells from NPC1(-/-) mice. In this study, we suggested that, along with cholesterol homeostasis, impaired neuronal differentiation and abnormal morphology of astrocytes could be rescued by the inhibition of HDAC and REST/NRSF activity induced by VPA treatment.  相似文献   

15.
16.
17.
18.
Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat‐me" signal that initiates glia‐mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal‐specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well‐known "eat‐me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post‐synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post‐synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post‐synapse elimination. Moreover, we found that phosphatidylserine is used for microglia‐mediated pruning of inhibitory post‐synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat‐me" signal for inhibitory post‐synapse elimination.  相似文献   

19.
Calcium sensing receptor (CaSR) is implicated in the establishment of neural connections and myelin formation. However, its contribution to brain development remains unclear. We addressed this issue by analyzing brain phenotype in postnatal CaSR null mice, a model of human neonatal severe hyperparathyroidism. One- and 2-week-old CaSR null mice exhibited decreased brain weight and size with a developmental delay in expression of proliferating cell nuclear antigen. Neuronal and glial differentiation markers, neuronal specific nuclear protein, glial fibrillary acidic protein, and myelin basic protein, were also decreased compared with age-matched wild-type littermates. Moreover, deletion of the parathyroid hormone gene that corrects hyperparathyroidism, hypercalcemia, hypophosphatemia, and whole-body growth retardation normalized brain cell proliferation, but not differentiation, in CaSR null mice. Cultured neural stem cells (NSCs) derived from the subventricular zones of CaSR null neonatal mice exhibited normal proliferation capacity but decreased differentiation capacity, compared with wild-type controls. These results demonstrate that direct effects of CaSR absence impair NSC differentiation, while secondary effects of parathyroid hormone-related endocrine abnormalities impair NSC proliferation, both of which contribute to delayed brain development in CaSR null newborn mice.  相似文献   

20.
The intracellular signaling controlling neural stem/progenitor cell (NSC) self-renewal and neuronal/glial differentiation is not fully understood. We show here that Shp2, an introcellular tyrosine phosphatase with two SH2 domains, plays a critical role in NSC activities. Conditional deletion of Shp2 in neural progenitor cells mediated by Nestin-Cre resulted in early postnatal lethality, impaired corticogenesis, and reduced proliferation of progenitor cells in the ventricular zone. In vitro analyses suggest that Shp2 mediates basic fibroblast growth factor signals in stimulating self-renewing proliferation of NSCs, partly through control of Bmi-1 expression. Furthermore, Shp2 regulates cell fate decisions, by promoting neurogenesis while suppressing astrogliogenesis, through reciprocal regulation of the Erk and Stat3 signaling pathways. Together, these results identify Shp2 as a critical signaling molecule in coordinated regulation of progenitor cell proliferation and neuronal/astroglial cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号