首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.  相似文献   

2.
Vascular endothelial growth factor‐D (VEGF‐D) is an angiogenic and lymphangiogenic glycoprotein that facilitates tumour growth and distant organ metastasis. Our previous studies showed that VEGF‐D stimulates the expression of proteins involved in cell–matrix interactions and promoting the migration of endothelial cells. In this study, we focused on the redox homoeostasis of endothelial cells, which is significantly altered in the process of tumour angiogenesis. Our analysis revealed up‐regulated expression of proteins that form the antioxidant barrier of the cell in VEGF‐D‐treated human umbilical endothelial cells and increased production of reactive oxygen and nitrogen species in addition to a transient elevation in the total thiol group content. Despite a lack of changes in the total antioxidant capacity, modification of the antioxidant barrier induced by VEGF‐D was sufficient to protect cells against the oxidative stress caused by hypochlorite and paraquat. These results suggest that exogenous stimulation of endothelial cells with VEGF‐D induces an antioxidant response of cells that maintains the redox balance. Additionally, VEGF‐D‐induced changes in serine/threonine kinase mTOR shuttling between the cytosol and nucleus and its increased phosphorylation at Ser‐2448, lead us to the conclusion that the observed shift in redox balance is regulated via mTOR kinase signalling.  相似文献   

3.
4.
5.
Inhibition of angiogenesis by a mouse sprouty protein   总被引:7,自引:0,他引:7  
Sprouty negatively modulates branching morphogenesis in the Drosophila tracheal system. To address the role of mammalian Sprouty homologues in angiogenesis, another form of branching morphogenesis, a recombinant adenovirus engineered to express murine Sprouty-4 selectively in endothelial cells, was injected into the sinus venosus of embryonic day 9.0 cultured mouse embryos. Sprouty-4 expression inhibited branching and sprouting of small vessels, resulting in abnormal embryonic development. In vitro, Sprouty-4 inhibited fibroblast growth factor and vascular endothelial cell growth factor-mediated cell proliferation and migration and prevented basic fibroblast growth factor and vascular endothelial cell growth factor-induced MAPK phosphorylation in endothelial cells, indicating inhibition of tyrosine kinase-mediated signaling pathways. The ability of constitutively activated mutant Ras(L61) to rescue Sprouty-4 inhibition of MAPK phosphorylation suggests that Sprouty inhibits receptor tyrosine kinase signaling upstream of Ras. Thus, Sprouty may regulate angiogenesis in normal and disease processes by modulating signaling by endothelial tyrosine kinases.  相似文献   

6.
7.
8.
Previous research shows that stimulation of proliferation of colon carcinoma (Caco-2) cells by a more reduced extracellular cysteine/cystine (Cys/CySS) redox state occurs with no apparent effect on intracellular glutathione and that this stimulation is lost on addition of epidermal growth factor. The purpose of the present study was to determine whether a more reduced extracellular Cys/CySS redox state activates the mitogenic p44/p42 mitogen-activated protein kinase (MAPK) pathway and whether this is signaled through the epidermal growth factor receptor (EGFR). Caco-2 cells were exposed to a range of physiological extracellular redox conditions from -150 to 0 mV. In the absence of added growth factors, the most reduced (-150 mV) redox state induced an 80% increase in EGFR phosphorylation, and this was followed by a marked increase in phosphorylation of p44/p42 MAPK. Inhibitors of EGFR (AG1478) and p44/p42 MAPK (U0126) phosphorylation blocked redox-dependent p44/p42 phosphorylation, indicating that signaling occurred by EGFR. These effects were inhibited by pretreatment with a nonpermeant alkylating agent, showing that signaling involved thiols accessible to the extracellular space. The EGFR ligand TGF-alpha was increased in culture medium at more reduced redox states. Redox-dependent phosphorylation of EGFR was completely prevented by a metalloproteinase inhibitor (GM6001), and an antibody to TGF-alpha partially inhibited the phosphorylation of p44/p42 MAPK by redox. Thus the data show that a redox-dependent activation of metalloproteinase can stimulate the mitogenic p44/p42 MAPK pathway by a TGF-alpha-dependent mechanism. Because Cys availability and Cys/CySS redox are dependent on nutrition, disease, and environmental exposures, the results suggest that cell proliferation could be influenced physiologically by Cys-dependent redox effects on growth factor signaling pathways.  相似文献   

9.
Pharmaceuticals and Personal Care Products (PPCPs) are a class of emerging environmental pollutants with the potential of affecting various aquatic organisms through unexpected modes of action. Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) (TCS), is a common antibacterial agent that is found in significant amounts in the aquatic environment. In this work, the possible effects and modes of action of TCS were investigated in the marine bivalve Mytilus galloprovincialis Lam. In mussel immune cells, the hemocytes, in vitro short-term exposure to TCS in the low microM range reduced lysosomal membrane stability (LMS) and induced extracellular release of lysosomal hydrolytic enzymes. The effects on LMS were mediated by activation of ERK MAPKs (Extracellularly Regulated Mitogen Activated Protein Kinases) and PKC (protein kinase C) alpha and betaII isoforms, as demonstrated by both specific kinase inhibitors and Western blotting with specific anti-phospho-antibodies. The effects of TCS were confirmed in vivo, in the hemocytes of mussels injected with different concentrations of TCS (corresponding to 0.29, 2.9 and 29 ng/g dry weight) and sampled at 24 h post-injection. The possible in vivo effects of TCS were also evaluated on the activity of different enzymes in the digestive gland, the tissue mainly involved in accumulation and metabolism of organic contaminants in mussels. Significant increases were observed in the activity of the glycolytic enzymes PFK (phosphofructokinase) and PK (pyruvate kinase), as well as of GST (GSH transferase) and GSR (GSSG reductase), whereas a decrease in catalase activity was observed. The results demonstrate that in mussels TCS can act on kinase-mediated cell signalling, lysosomal membranes and redox balance in different systems/organs. Although further studies are needed in order to evaluate possible consequences of environmental exposure to TCS on mussel health, the results represent the first data on the possible modes of action of this widespread antibacterial in aquatic invertebrates.  相似文献   

10.
Females live longer than males. Oestrogens protect females against aging by up-regulating the expression of antioxidant, longevity-related genes such as glutathione peroxidase (GPx) and Mn-superoxide dismutase (Mn-SOD). The mechanism through which oestrogens up-regulate those enzymes remains unidentified, but may have implications for gender differences in lifespan. We show that physiological concentrations of oestradiol act through oestrogen receptors to reduce peroxide levels in MCF-7 cells (a mammary gland tumour cell line). Oestradiol increases MAP kinase (MAPK) activation as indicated by ERK1 and ERK2 phosphorylation in MCF-7 cells, which in turn activates the nuclear factor kappa B (NFkappaB) signalling pathways as indicated by an increase in the p50 subunit of NFkappaB in nuclear extracts. Blockade of MAPK and NFkappaB signalling reduces the antioxidant effect of oestradiol. Finally, we show that activation of MAPK and NFkappaB by oestrogens drives the expression of the antioxidant enzymes Mn-SOD and GPx. We conclude that oestradiol sequentially activates MAPK and NFkappaB following receptor activation to up-regulate the expression of antioxidant enzymes, providing a cogent explanation for the antioxidant properties of oestrogen and its effects on longevity-related genes.  相似文献   

11.
Zhang A  Jiang M  Zhang J  Tan M  Hu X 《Plant physiology》2006,141(2):475-487
The role of mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense was investigated in leaves of maize (Zea mays) plants. Treatments with ABA or H(2)O(2) induced the activation of a 46-kD MAPK and enhanced the expression of the antioxidant genes CAT1, cAPX, and GR1 and the total activities of the antioxidant enzymes catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Such enhancements were blocked by pretreatment with several MAPK kinase inhibitors and reactive oxygen species inhibitors or scavengers. Pretreatment with MAPK kinase inhibitors also substantially arrested the ABA-induced H(2)O(2) production after 2 h of ABA treatment, but did not affect the levels of H(2)O(2) within 1 h of ABA treatment. Pretreatment with several inhibitors of protein tyrosine phosphatase, which is believed to be a negative regulator of MAPK, only slightly prevented the ABA-induced H(2)O(2) production, but did not affect the ABA-induced MAPK activation and ABA-enhanced antioxidant defense systems. These results clearly suggest that MAPK but not protein tyrosine phosphatase is involved in the ABA-induced antioxidant defense, and a cross talk between H(2)O(2) production and MAPK activation plays a pivotal role in the ABA signaling. ABA-induced H(2)O(2) production activates MAPK, which in turn induces the expression and the activities of antioxidant enzymes. The activation of MAPK also enhances the H(2)O(2) production, forming a positive feedback loop.  相似文献   

12.
BackgroundThe metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems.Methodology/Principal findingsUsing bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles.Conclusions/SignificanceWe provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.  相似文献   

13.
Activation of the canonical mitogen-activated protein kinase (MAPK) cascade by soluble mitogens is blocked in non-adherent cells. It is also blocked in cells in which the cAMP-dependent protein kinase (PKA) is activated. Here we show that inhibition of PKA allows anchorage-independent stimulation of the MAPK cascade by growth factors. This effect is transient, and its duration correlates with sustained tyrosine phosphorylation of paxillin and focal-adhesion kinase (FAK) in non-adherent cells. The effect is sensitive to cytochalasin D, implicating the actin cytoskeleton as an important factor in mediating this anchorage-independent signalling. Interestingly, constitutively active p21-activated kinase (PAK) also allows anchorage-independent MAPK signalling. Furthermore, PKA negatively regulates PAK in vivo, and whereas the induction of anchorage-independent signaling resulting from PKA suppression is blocked by dominant negative PAK, it is markedly prolonged by constitutively active PAK. These observations indicate that PKA and PAK are important regulators of anchorage-dependent signal transduction.  相似文献   

14.
15.
Integrin-mediated Signaling Events in Human Endothelial Cells   总被引:7,自引:2,他引:5       下载免费PDF全文
Vascular endothelial cells are important in a variety of physiological and pathophysiological processes. The growth and functions of vascular endothelial cells are regulated both by soluble mitogenic and differentiation factors and by interactions with the extracellular matrix; however, relatively little is known about the role of the matrix. In the present study, we investigate whether integrin-mediated anchorage to a substratum coated with the extracellular matrix protein fibronectin regulates growth factor signaling events in human endothelial cells. We show that cell adhesion to fibronectin and growth factor stimulation trigger distinct initial tyrosine phosphorylation events in endothelial cells. Thus, integrin-dependent adhesion of endothelial cells leads to tyrosine phosphorylation of both focal adhesion kinase and paxillin, but not of several growth factor receptors. Conversely, EGF stimulation causes receptor autophosphorylation, with no effect on focal adhesion kinase or paxillin tyrosine phosphorylation. Adhesion to fibronectin, in the absence of growth factors, leads to activation of MAPK. In addition, adhesion to fibronectin also potentiates growth factor signaling to MAPK. Thus, polypeptide growth factor activation of MAPK in anchored cells is far more effective than in cells maintained in suspension. Other agonists known to activate MAPK were also examined for their ability to activate MAPK in an anchorage-dependent manner. The neuropeptide bombesin, the bioactive lipid lysophosphatidic acid (LPA), and the cytokine tumor necrosis factor α, which signal through diverse mechanisms, were all able to activate MAPK to a much greater degree in fibronectin-adherent cells than in suspended cells. In addition, tumor necrosis factor α activation of c-Jun kinase (JNK) was also much more robust in anchored cells. Together, these data suggest a cooperation between integrins and soluble mitogens in efficient propagation of signals to downstream kinases. This cooperation may contribute to anchorage dependence of mitogenic cell cycle progression.  相似文献   

16.
Fibroblast growth factors (FGFs) signal through high-affinity tyrosine kinase receptors to regulate a diverse range of cellular processes, including cell growth, differentiation and migration, as well as cell death. Here we identify XFLRT3, a member of a leucine-rich-repeat transmembrane protein family, as a novel modulator of FGF signalling. XFLRT3 is co-expressed with FGFs, and its expression is both induced after activation and downregulated after inhibition of FGF signalling. In gain- and loss-of function experiments, FLRT3 and FLRT2 phenocopy FGF signalling in Xenopus laevis. XFLRT3 signalling results in phosphorylation of ERK and is blocked by MAPK phosphatase 1, but not by expression of a dominant-negative phosphatidyl inositol 3-OH kinase (PI(3)K) mutant. XFLRT3 interacts with FGF receptors (FGFRs) in co-immunoprecipitation experiments in vitro and in bioluminescence resonance energy transfer assays in vivo. The results indicate that XFLRT3 is a transmembrane modulator of FGF-MAP kinase signalling in vertebrates.  相似文献   

17.
18.
Mitogenic signalling pathways from G protein-coupled receptors (GPCRs) to the mitogen-activated protein kinase (MAPK) cascade may involve alpha- or betagamma-subunits of heterotrimeric G proteins, receptor or non-receptor tyrosine kinases, adaptor molecules, phosphoinositide 3-kinases, protein kinase C, and probably other proteins. The majority of models describing the connection of different signalling proteins within a mitogenic pathway are based on experimental data obtained by co- and overexpression of epitope-tagged MAPK together with the respective GPCR and other signalling proteins of interest in transfectable cell lines. Here the link of the bradykinin B2 receptor (B2R) to MAPK in the COS-7 cell expression system is compared with mitogenic signalling pathways of bradykinin in various tumour cell lines. It becomes evident that in natural or tumour cells expressing individual amounts and different isoforms of signalling proteins completely other relations between B2R and MAPK may exist than in COS-7 cells, suggesting a high degree of cellular specificity in mitogenic signalling.  相似文献   

19.
Interactions between Eph receptor tyrosine kinases (RTKs) and membrane-anchored ephrin ligands critically regulate axon pathfinding and development of the cardiovascular system, as well as migration of neural cells. Similar to other RTKs, ligand-activated Eph kinases recruit multiple signalling and adaptor proteins, several of which are involved in growth regulation. However, in contrast to other RTKs, activation of Eph receptors fails to promote cell proliferation or to transform rodent fibroblasts, indicating that Eph kinases may initiate signalling pathways that are distinct from those transmitted by other RTKs. Here we show that stimulation of endogenous EphA kinases with ephrin-A1 potently inhibits the Ras/MAPK cascade in a range of cell types, and attenuates activation of mitogen-activated protein kinase (MAPK) by receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). In prostatic epithelial cells and endothelial cells, but not fibroblasts, treatment with ephrin-A1 inhibits cell proliferation. Our results identify EphA kinases as negative regulators of the Ras/MAPK pathway that exert anti-mitogenic functions in a cell-type-specific manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号