首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Jasmonic acid (JA) is regarded as an endogenous regulator which plays an important role in regulating plant growth, development and stress response. Using the seedlings of A. thaliana ecotype Col-0 (wild-type, WT), phospholipase Dδ (PLDδ) deficient mutant (pldδ), the G protein α subunit (GPA1) deficient mutant (gpa1-4), 9-Lipoxygenase (9-LOX) deficient mutants (lox1 and lox5) as materials, the effects of JA responding to osmotic stress and the functions of G protein and PLDδ in this response were investigated. The results showed that GPA1 involved in the regulation of JA to PLDδ under osmotic stress. Both GPA1 and PLDδ participated in the regulation of JA on the seed germination and osmotic tolerance. Exogenous MeJA reduced the EL and MDA in WT, but increased the EL and MDA in gpa1-4 and pldδ, indicating that GPA1 and PLDδ were involved in the protection of JA on the membrane. The genes expression levels, and the activities of PLDδ and LOX1 were significantly induced by osmotic stress. The LOX activity and JA content in pldδ seedings were lower obviously than those in WT, but were markedly increased and were higher than WT after applying phosphatidic acid (PA). These results demonstrated that JA responded to osmotic stress by regulating G protein and PLDδ in A. thaliana. PLDδ was located upstream of 9-LOX and involved in the JA biosynthesis.  相似文献   

4.
Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA‐Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1‐1) and in JA‐dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA‐Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress‐induced JA‐Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.  相似文献   

5.
6.
7.
8.
9.
10.
SUMOylation is an important post‐translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS‐type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene (SlSIZ1) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up‐regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H2O2) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1‐2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress.  相似文献   

11.
12.
13.
The role of a subfamily of lipid globule‐associated proteins, referred to as plant fibrillins (FIB1a, ‐1b, ‐2), was determined using a RNA interference (RNAi) strategy. We show that Arabidopsis plants with reduced levels of these plastid structural proteins are impaired in long‐term acclimation to environmental constraint, namely photooxidative stress imposed by high light combined with cold. As a result, their photosynthetic apparatus is inefficiently protected. This leads to the prevalence of an abnormal granal and stromal membrane arrangement, as well as higher photosystem II photoinhibition under stress. The visible phenotype of FIB1‐2 RNAi lines also includes retarded shoot growth and a deficit in anthocyanin accumulation under stress. All examined phenotypic effects of lower FIB levels are abolished by jasmonate (JA) treatment. An atypical expression pattern of several JA‐induced genes was observed in RNAi plants. A JA‐deficient mutant was found to share similar stress phenotypic characteristics with FIB RNAi plants. We conclude a new physiological role for JA, namely acclimation of chloroplasts, and that light/cold stress‐related JA biosynthesis is conditioned by the accumulation of plastoglobule‐associated FIB1‐2 proteins. Consistent correlative data suggest that this FIB effect is mediated by plastoglobule (and triacylglycerol) accumulation as the potential site for initiating the chloroplast stress‐related JA biosynthesis.  相似文献   

14.
Low temperature stress adversely affects plant growth, development, and crop productivity. Analysis of the function of genes in the response of plants to low temperature stress is essential for understanding the mechanism of chilling and freezing tolerance. In this study, PsCor413im1, a novel cold-regulated gene isolated from Phlox subulata, was transferred to Arabidopsis to investigate its function under low temperature stress. Real-time quantitative PCR analysis revealed that PsCor413im1 expression was induced by cold and abscisic acid. Subcellular localization revealed that PsCor413im1-GFP fusion protein was localized to the periphery of the chloroplast, consistent with the localization of chloroplast inner membrane protein AtCor413im1, indicating that PsCor413im1 is a chloroplast membrane protein. Furthermore, the N-terminal of PsCor413im1 was determined to be necessary for its localization. Compared to the wild-type plants, transgenic plants showed higher germination and survival rates under cold and freezing stress. Moreover, the expression of AtCor15 in transgenic plants was higher than that in the wild-type plants under cold stress. Taken together, our results suggest that the overexpression of PsCor413im1 enhances low temperature tolerance in Arabidopsis.  相似文献   

15.
16.
AtALMT1 (Arabidopsis thaliana ALuminum activated Malate Transporter 1) encodes an Arabidopsis thaliana malate transporter that has a pleiotropic role in Arabidopsis stress tolerance. Malate released through AtALMT1 protects the root tip from Al rhizotoxicity, and recruits beneficial rhizobacteria that induce plant immunity. To examine whether the overexpression of AtALMT1 can improve these traits, the gene, driven by the cauliflower mosaic virus 35S promoter, was introduced into the Arabidopsis ecotype Columbia. Overexpression of the gene enhanced both Al-activated malate excretion and the recruitment of beneficial bacteria Bacillus subtilis strain FB17. These findings suggest that overexpression of AtALMT1 can be used as an approach to enhance a plant's ability to release malate into the rhizosphere, which can enhance plant tolerance to some environmental stress factors.  相似文献   

17.
18.
Stilbenes, including trans-resveratrol (3,4′,5-trihydroxy-trans-stilbene), are known to exert beneficial health effects and contribute to plant biotic stress resistance. Much remains to be discovered about the cell signaling pathways regulating stilbene biosynthesis. It has recently been shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased t-resveratrol accumulation in cell cultures of Vitis amurensis. In this study, we analyzed the involvement of other CDPK family members, VaCPK1 and VaCPK26, on stilbene synthesis and biomass production by cell cultures of V. amurensis. We showed that overexpression of the VaCPK1 and 26 genes induced production of stilbenes by 1.7–4.6-fold (for VaCPK1) and by 2.5–6.2-fold (for VaCPK26) in several independently established cell lines compared to the empty vector-transformed control. Using HPLC-UV-MS, we detected five stilbenes in the grape cells: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε- and δ-viniferin. The VaCPK1- and VaCPK26-transformed calli were capable of producing 1.4–3.1 and 1.8–4.9 mg/l of t-resveratrol, respectively (up to 0.4 for and 0.6 mg/g of dry weight for VaCPK26 and VaCPK1, respectively), while the control line synthesized only 0.5 mg/l of t-resveratrol (0.07 mg/g DW). The up-regulation of t-resveratrol production in the VaCPK1- and VaCPK26-overexpressing grape calli correlated with a significant up-regulation of stilbene synthase (STS) gene expression, especially VaSTS7. The data indicate that VaCPK1 and 26 genes, which are close homologues of VaCPK20, are positive regulators of stilbene biosynthesis in grapevine.  相似文献   

19.
Cold shock domain (CSD) proteins are RNA chaperones that destabilize RNA secondary structures. Arabidopsis Cold Shock Domain Protein 2 (AtCSP2), one of the 4 CSD proteins (AtCSP1-AtCSP4) in Arabidopsis, is induced during cold acclimation but negatively regulates freezing tolerance. Here, we analyzed the function of AtCSP2 in salt stress tolerance. A double mutant, with reduced AtCSP2 and no AtCSP4 expression (atcsp2–3 atcsp4–1), displayed higher survival rates after salt stress. In addition, overexpression of AtCSP2 resulted in reduced salt stress tolerance. These data demonstrate that AtCSP2 acts as a negative regulator of salt stress tolerance in Arabidopsis.  相似文献   

20.
In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway.Key words: jasmonic acid, lipase, lipoxygenase, wounding, plant-insect interactions, FAC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号