首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and Aims

Parkinsonia aculeata (Caesalpinaceae) is a perennial legume with seeds that have hard-seeded (physical) dormancy and are potentially very long-lived. Seed dormancy is a characteristic that can both help maximize the probability of seedling establishment and spread the risk of recruitment failure across years (bet-hedging). In this study, dormancy-release patterns are described across the diverse environments in which this species occurs in order to test whether wet heat (incubation under wet, warm-to-hot, conditions) alone can explain those patterns, and in order to determine the likely ecological role of physical dormancy across this species distribution.

Methods

A seed burial trial was conducted across the full environmental distribution of P. aculeata in Australia (arid to wet-dry tropics, uplands to wetlands, soil surface to 10 cm deep).

Key Results

Wet heat explained the pattern of dormancy release across all environments. Most seeds stored in the laboratory remained dormant throughout the trial (at least 84 %). Dormancy release was quickest for seeds buried during the wet season at relatively high rainfall, upland sites (only 3 % of seeds remained dormant after 35 d). The longest-lived seeds were in wetlands (9 % remained dormant after almost 4 years) and on the soil surface (57 % after 2 years). There was no consistent correlation between increased aridity and rate of dormancy release.

Conclusions

The results suggest that physical dormancy in P. aculeata is a mechanism for maximizing seedling establishment rather than a bet-hedging strategy. However, seed persistence can occur in environmental refuges where dormancy-release cues are weak and conditions for germination and establishment are poor (e.g. under dense vegetation or in more arid micro-environments) or unsuitable (e.g. when seeds are inundated or on the soil surface). Risks of recruitment failure in suboptimal environments could therefore be reduced by inter-year fluctuations in microclimate or seed movement.Key words: Bet-hedging, dormancy-release mechanisms, environmental refuges, legume, Parkinsonia aculeata, physical dormancy, seed bank persistence, seed burial depth, seed dormancy, tropical wetlands, wet heat, variable environment  相似文献   

2.
Seeds of alfalfa (Medicago sativa L.) can exhibit seedcoat imposed dormancy, which produces hard seeds within a seed lot. These seeds do not germinate because they do not imbibe water due to a barrier to water entry in the seed coat. The aim of this work was to analyze the anatomical and chemical characteristics of the testa of alfalfa seeds with respect to water permeability levels. The anatomy of seeds of the cv. Baralfa 85 was studied and structural substances, polyphenols, tannins and cutin present in the testa of seeds of different water permeability levels were determined. The anatomical characteristics of the seed coat and the proportions of components were found to determine the permeability level of the seed coat, an aspect that is associated with the physical seed dormancy level. Anatomically, increased thickness of the testa was associated with a lower permeability level. The difference may be attributed to the variation in cuticle thickness, length of macrosclereids and thickness of the cell wall, and presence and development of osteosclereids. From the physiological and chemical points of view, the mechanism of physical dormancy of the testa is explained by a greater amount of components that repel water and cement the cell wall, such as polyphenols, lignins, condensed tannins, pectic substances, and a lower proportion of cellulose and hemicellulose.  相似文献   

3.
4.

Background and Aims

Dry fruits remain around the seeds at dispersal in a number of species, especially the Brassicaceae. Explanations for this vary, but usually involve mechanisms of innate dormancy. We speculate that, instead, a persistent fruit may give additional protection through control of dehydration, to species growing in arid or Mediterranean environments where water is sporadic.

Methods

X-rays and weight measurements were used to determine the extent to which Raphanus raphanistrum seeds within mature fruits imbibe water, and germination tests determined the roles of the fruit and seed coat in seed dormancy. Rates of water uptake and desiccation, and seedling emergence were compared with and without the fruit. Finally, germinability of seeds extracted from fruits was determined after various periods of moist conditions followed by a range of dry conditions.

Key Results

Most seeds rapidly take up water within the fruit, but they do not fully imbibe when compared with naked seeds. The seed coat is more important than the dry fruit wall in maintaining seed dormancy. The presence of a dry fruit slows emergence from the soil by up to 6–8 weeks. The fruit slows the rate of desiccation of the seed to a limited extent. The presence of the fruit for a few days during imbibition somehow primes more seeds to germinate than if the fruit is absent; longer moist periods within the pod appear to induce dormancy.

Conclusions

The fruit certainly modifies the seed environment as external conditions change between wet and dry, but not to a great extent. The major role seems to be: (a) the physical restriction of imbibition and germination; and (b) the release and then re-imposition of dormancy within the seed. The ecological significance of the results requires more research under field conditions.  相似文献   

5.
6.
BACKGROUND AND AIMS: There is considerable confusion in the literature concerning impermeability of seeds with 'hard' seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. METHODS: The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. KEY RESULTS: A germination valve and a water channel are formed in the hilum-micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. CONCLUSIONS: Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae.  相似文献   

7.
Physical dormancy (impermeability of seed coats to water) is related to histological features of the seed coat. This mechanism has ecological importance since it determines the time and space of germination. The aim of the present study was to compare the histology and impermeability of the seed coat in five Neotropical Acacia species from xerophytic forests of central Argentina: Acacia aroma, A. caven, A. atramentaria, A. gilliesii and A. praecox. An imbibition experiment was performed to determine the presence or absence of physical dormancy. Seed coat structure was studied through histochemical analysis. The seeds of A. gilliesii and A. praecox were treated with ammonium ferrous sulfate to identify the sites of water entry. Acacia aroma, A. caven and A. atramentaria exhibited physical dormancy; the seed coat was very thick and compact, with a wide, sclerified parenchyma and a “water gap” for water uptake. Seed coat impermeability in these species was mainly attributed to characteristics of the lignified epidermis. By contrast, A. gilliesii and A. praecox did not have physical dormancy and showed thin seed coats with a much narrower sclerified parenchyma. Water entered the seeds of A. gilliesii and A. praecox not only through the hilar zone but also through the entire surface of the seed coat. Differences in the seed coat structure among species could be related to different regenerative responses to environmental conditions that would facilitate the coexistence of these Acacia species in the xerophytic forests of Córdoba, Argentina.  相似文献   

8.
Background and Aims: The water gap is an important morphoanatomical structure inseeds with physical dormancy (PY). It is an environmental signaldetector for dormancy break and the route of water into thenon-dormant seed. The Convolvulaceae, which consists of subfamiliesConvolvuloideae (11 tribes) and Humbertoideae (one tribe, monotypicHumberteae), is the only family in the asterid clade known toproduce seeds with PY. The primary aim of this study was tocompare the morphoanatomical characteristics of the water gapin seeds of species in the 11 tribes of the Convolvuloideaeand to use this information, and that on seed dormancy and storagebehaviour, to construct a phylogenetic tree of seed dormancyfor the subfamily. Methods: Scanning electron microscopy (SEM) was used to define morphologicalchanges in the hilum area during dormancy break; hand and vibratomesections were taken to describe the anatomy of the water gap,hilum and seed coat; and dye tracking was used to identify theinitial route of water entry into the non-dormant seed. Resultswere compared with a recent cladogram of the family. Key Results: Species in nine tribes have (a) layer(s) of palisade cells inthe seed coat, a water gap and orthodox storage behaviour. Erycibe(Erycibeae) and Maripa (Maripeae) do not have a palisade layerin the seed coat or a water gap, and are recalcitrant. The hilarfissure is the water gap in relatively basal Cuscuteae, andbulges adjacent to the micropyle serve as the water gap in theConvolvuloideae, Dicranostyloideae (except Maripeae) and theCardiochlamyeae clades. Seeds from the Convolvuloideae havemorphologically prominent bulges demarcated by cell shape inthe sclereid layer, whereas the Dicranostyloideae and Cardiochlamyeaehave non-prominent bulges demarcated by the number of sub-celllayers. The anatomy and morphology of the hilar pad follow thesame pattern. Conclusions: PY in the subfamily Convolvuloideae probably evolved in theaseasonal tropics from an ancestor with recalcitrant non-dormantseeds, and it may have arisen as Convolvulaceae radiated tooccupy the seasonal tropics. Combinational dormancy may havedeveloped in seeds of some Cuscuta spp. as this genus movedinto temperate habitats.  相似文献   

9.
The dynamics of dormancy release during the stratification of apple (Malus domestica Borkh.) seeds was quantitatively described by three characteristics of seeds germination: the percentage of seeds that germinated by the tenth day, mean germination time, and the sum of seeds germinated in each of ten days (Timson's parameter), which allowed the assessment of the viability, the rate of dormancy release, and seed heterogeneity. We showed that apple seeds were characterized by a combined (physical and physiological) type of dormancy, with the seed coat and the embryo envelope being involved in the maintenance of physical dormancy. The addition of sucrose to the stratification medium accelerated the release of seed dormancy and improved all characteristics that determine seed germinability. Electrolyte leakage from embryos hardly changed during stratification, which agrees with the fact that all seeds remained viable throughout the entire period of dormancy. We assume that the release of seed dormancy is not a single-stage process.  相似文献   

10.
11.
血皮槭种子休眠机制研究   总被引:2,自引:0,他引:2  
利用抑制物生物测定法和酸蚀技术研究了血皮槭种子休眠的原因。血皮槭种子吸水是一个非常缓慢的过程,在140 h以后种子含水量才能达到68%左右。酸蚀处理种子3 h,虽然没有加快种子的吸水速率,但能较好得使果皮变薄,也不影响种子的生活力。种子的各部位(果皮、种皮、子叶、胚根)均含有抑制物质,对小白菜种子的发芽率及胚根生长有很强的抑制作用,子叶各种处理水浸提液的抑制作用最强,果皮和种皮次之。血皮槭种子休眠主要由种壳机械障碍和种胚生理休眠两重因素导致,因此如何克服致密果壳而使激素能接触生理休眠的种胚是打破其种子休眠的关键技术。  相似文献   

12.

Background and Aims

Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics.

Methods

Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested.

Key Results

Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context.

Conclusions

The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.Key words: Borszczowia, cold desert halophyte, physiological seed dormancy, seed germination, Suaeda  相似文献   

13.
14.
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed‐plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed‐specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss‐of‐function atper1 mutants, atper1‐1 and atper1‐2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild‐type seeds. The suppressed primary seed dormancy of atper1‐1 was completely reduced by deletion of CYP707A genes. Furthermore, loss‐of‐function of AtPER1 cannot enhance the seed germination ratio of aba2‐1 or ga1‐t, suggesting that AtPER1‐enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild‐type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.  相似文献   

15.
16.
17.
The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy.  相似文献   

18.
Hard seeds of some legume species can germinate after seed-feeding insects bore through the seed coat and consequently break seed dormancy. Larvae of bruchine beetles are the main seed feeders attacking many legume species. Boring of the hard seed coat by bruchine beetle larvae enhances the germination percentage of legume species, but consuming too much of a single seed may reduce the chances the seed will survive. We hypothesise that the early mortality of bruchine larvae due to parasitism contributes positively to seed germination because larvae are killed before consuming too large a quantity of the seed. Here, we tested this hypothesis using Lathyrus japonicus seeds and Bruchus loti, the main seed feeder attacking this plant. B. loti larvae were mainly parasitised by two species of idiobiont parasitoids—Pteromalus sp. and Dinarmus sp. The seeds from which Pteromalus wasps emerged germinated more successfully than did the seeds from which B. loti adults emerged. B. loti larvae parasitised by the two wasp species consumed the seeds less intensively than did unparasitised larvae. Thus, the results of experiments supported our hypothesis. However, the germination success varied significantly between the seeds from which Pteromalus and Dinarmus wasps emerged. The difference in the size of seeds the two wasp species chose for parasitism may have influenced the germination percentage.  相似文献   

19.

Background and Aims

The Sapindaceae is one of 17 plant families in which seed dormancy is caused by a water-impermeable seed or fruit coat (physical dormancy, PY). However, until now the water gap in Sapindaceae had not been identified. The primary aim of this study was to identify the water gap in Dodonaea petiolaris (Sapindaceae) seeds and to describe its basic morphology and anatomy.

Methods

Seed fill, viability, water-uptake (imbibition) and other characteristics were assessed for D. petiolaris seeds. The location and structure of the water gap were investigated using a blocking experiment, time series photography, scanning electron microscopy and light microscopy. Dodonaea petiolaris seeds with PY also were assessed for loss of PY at four ecologically significant temperatures under moist and dry conditions. Seeds of three other species of Sapindaceae were examined for presence of a water gap.

Key Results

The water gap in D. petiolaris seeds was identified as a small plug in the seed coat adjacent to the hilum and opposite the area where the radicle emerges. The plug was dislodged (i.e. water gap opened = dormancy break) by dipping seeds in boiling water for 2·5 min or by incubating seeds on a moist substrate at 20/35 °C for 24 weeks. Layers of cells in the plug, including palisade and subpalisade, are similar to those in the rest of the seed coat. The same kind of water gap was found in three other species of Sapindaceae, Diplopeltis huegelii, Distichostemon hispidulus and Dodonaea aptera.

Conclusions

Following dormancy break (opening of water gap), initial uptake of water by the seed occurs only through the water gap. Thus, the plug must be dislodged before the otherwise intact seed can germinate. The anatomy of the plug is similar to water gaps in some of the other plant families with PY.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号