首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported that varicella-zoster virus (VZV) causes a delayed host shutoff during its replicative cycle. VZV open reading frame 17 (ORF17) is the homologue of the herpes simplex virus (HSV) UL41 gene encoding the virion host shutoff (vhs) protein which is responsible for the shutoff effect observed in HSV-infected cells. In the present study, we demonstrated that ORF17 is expressed as a late protein during the VZV replicative cycle in different infected permissive cell lines which showed a delayed shutoff of cellular RNA. A cell line with stable expression of VZV ORF17 was infected with VZV. In these cells, VZV replication and delayed host shutoff remained unchanged when compared to normal infected cells. ORF17 was not capable of repressing the expression of the beta-gal reporter gene under the control of the human cytomegalovirus immediate-early gene promoter or to inhibit the expression of a CAT reporter gene under the control of the human GAPDH promoter, indicating that ORF17 has no major function in the VZV-mediated delayed host shutoff. To determine whether other viral factors are involved in the host shutoff, a series of cotransfection assays was performed. We found that the immediate-early 63 protein (IE63) was able to downregulate the expression of reporter genes under the control of the two heterologous promoters, indicating that this viral factor can be involved in the VZV-mediated delayed host shutoff. Other factors can be also implicated to modulate the repressing action of IE63 to achieve a precise balance between the viral and cellular gene expression.  相似文献   

2.
Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella during primary infection. VZV reactivation from neuronal latency may cause herpes zoster, post herpetic neuralgia (PHN) and other neurologic syndromes. To investigate VZV neuropathogenesis, we developed a model using human dorsal root ganglia (DRG) xenografts in immunodeficient (SCID) mice. The SCID DRG model provides an opportunity to examine characteristics of VZV infection that occur in the context of the specialized architecture of DRG, in which nerve cell bodies are ensheathed by satellite glial cells (SGC) which support neuronal homeostasis. We hypothesized that VZV exhibits neuron-subtype specific tropism and that VZV tropism for SGC contributes to VZV-related ganglionopathy. Based on quantitative analyses of viral and cell protein expression in DRG tissue sections, we demonstrated that, whereas DRG neurons had an immature neuronal phenotype prior to implantation, subtype heterogeneity was observed within 20 weeks and SGC retained the capacity to maintain neuronal homeostasis longterm. Profiling VZV protein expression in DRG neurons showed that VZV enters peripherin+ nociceptive and RT97+ mechanoreceptive neurons by both axonal transport and contiguous spread from SGC, but replication in RT97+ neurons is blocked. Restriction occurs even when the SGC surrounding the neuronal cell body were infected and after entry and ORF61 expression, but before IE62 or IE63 protein expression. Notably, although contiguous VZV spread with loss of SGC support would be predicted to affect survival of both nociceptive and mechanoreceptive neurons, RT97+ neurons showed selective loss relative to peripherin+ neurons at later times in DRG infection. Profiling cell factors that were upregulated in VZV-infected DRG indicated that VZV infection induced marked pro-inflammatory responses, as well as proteins of the interferon pathway and neuroprotective responses. These neuropathologic changes observed in sensory ganglia infected with VZV may help to explain the neurologic sequelae often associated with zoster and PHN.  相似文献   

3.
Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons   总被引:6,自引:4,他引:2  
Virus-encoded modulation of apoptosis may serve as a mechanism to enhance cell survival and virus persistence. The impact of productive varicella-zoster virus (VZV) infection on apoptosis appears to be cell type specific, as infected human sensory neurons are resistant to apoptosis, yet human fibroblasts readily become apoptotic. We sought to identify the viral gene product(s) responsible for this antiapoptotic phenotype in primary human sensory neurons. Treatment with phosphonoacetic acid to inhibit viral DNA replication and late-phase gene expression did not alter the antiapoptotic phenotype, implicating immediate-early (IE) or early genes or a virion component. Compared to the parental VZV strain (rOKA), a recombinant virus unable to express one copy of the diploid IE gene ORF63 (rOkaΔORF63) demonstrated a significant induction of apoptosis in infected neurons, as determined by three methods: annexin V staining, deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining, and transmission electron microscopy. Furthermore, neurons transfected with a plasmid expressing ORF63 resisted apoptosis induced by nerve growth factor withdrawal. These results show that ORF63 can suppress apoptosis of neurons and provide the first identification of a VZV gene encoding an antiapoptotic function. As ORF63 is expressed in neurons during both productive and latent infection, it may play a significant role in viral pathogenesis by promoting neuron survival during primary and reactivated infections.  相似文献   

4.
Sato B  Sommer M  Ito H  Arvin AM 《Journal of virology》2003,77(22):12369-12372
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes two diseases, chickenpox and zoster. VZV open reading frame 4 (ORF4) encodes the immediate-early 4 (IE4) protein, which is conserved among alphaherpesvirus and has transactivation activity in transient transfections. To determine whether the ORF4 gene product is essential for viral replication, we used VZV cosmids to remove ORF4 from the VZV genome. Deleting ORF4 was incompatible with recovery of infectious virus, whereas transfections done by using repaired cosmids with ORF4 inserted at a nonnative site yielded virus. To analyze the functional domain of IE4, we introduced a mutation altering the C-terminal amino acids, KYFKC (K443S), which was designed to disrupt the dimerization of IE4 protein. Transfections with these mutant cosmids yielded no virus, indicating that this KYFKC motif was essential for IE4 function.  相似文献   

5.
6.
7.
BACKGROUND: Cytomegalovirus (CMV) is the most significant infectious cause of congenital anomalies of the central nervous system caused by intrauterine infection in humans. The timing of infection and the susceptibility of cells in early gestational stages are not well understood. In this study we investigated the susceptibility of embryonic stem (ES) cells to CMV infection during differentiation. METHODS: ES cell lines were established from transgenic mice integrated with the murine CMV (MCMV) immediate-early (IE) promoter connected with a reporter lacZ gene. The susceptibility of the ES cells was analyzed in terms of viral gene expression and viral replication after induction of differentiation. RESULTS: ES cells were nonpermissive to MCMV infection in the undifferentiated state. Upon differentiation, permissive cells appeared approximately 2 weeks after the leukemia inhibitory factor was removed. Upon neural differentiation by retinoic acid (RA), glial cells showed specific susceptibility in terms of expression of the viral antigen. The MCMV IE promoter was not activated in ES cells from the transgenic mice. Activation of the IE promoter was detected approximately 2 weeks after induction of differentiation and observed predominantly in glial cells. Upon MCMV infection of the ES cells, viral infection was correlated with the activation of the IE promoter. CONCLUSIONS: ES cells are nonpermissive to MCMV infection and acquire permissiveness about 2 weeks after induction of differentiation, especially in glial cells. Acquisition of permissiveness in differentiated ES cells may be associated with activation of the IE promoter.  相似文献   

8.
9.
10.
J I Cohen  K Seidel 《Journal of virology》1994,68(12):7850-7858
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein in the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. VZV ORF10 transactivates the VZV IE62 gene and is a tegument protein present in the virion. HSV-1 VP16, a potent transactivator of HSV-1 immediate-early genes and tegument protein, is essential for HSV-1 replication in vitro. To determine whether VZV ORF10 is required for viral replication in vitro, we constructed two VZV mutants which were unable to express ORF10. One mutant had a stop codon after the 61st codon of the ORF10 gene, and the other mutant was deleted for all but the last five codons of the gene. Both VZV mutants grew in cell culture to titers similar to that of the parental virus. To determine whether HSV-1 VP16 alters the growth of VZV, we constructed a VZV mutant in which VP16 was inserted in place of ORF10. Using immune electron microscopy, we found that HSV-1 VP16 was present in the tegument of the recombinant VZV virions. The VZV VP16 substitution mutant produced smaller plaques and grew to a lower titer than parental virus. Thus, VZV ORF10 is not required for growth of the virus in vitro, and substitution of HSV-1 VP16 for VZV ORF10 impairs the growth of VZV.  相似文献   

11.
12.
13.
Human cytomegalovirus (HCMV) infection of permissive cells has been reported to induce a cell cycle halt. One or more viral proteins may be involved in halting progression at different stages of the cell cycle. We investigated how HCMV infection, and specifically IE86 protein expression, affects the cell cycles of permissive and nonpermissive cells. We used a recombinant virus that expresses the green fluorescent protein (GFP) to determine the effects of HCMV on the cell cycle of permissive cells. Fluorescence by GFP allowed us to select for only productively infected cells. Replication-defective adenovirus vectors expressing the IE72 or IE86 protein were also used to efficiently transduce 95% or more of the cells. The adenovirus-expressed IE86 protein was determined to be functional by demonstrating negative autoregulation of the major immediate-early promoter and activation of an early viral promoter in the context of the viral genome. To eliminate adenovirus protein effects, plasmids expressing GFP for fluorescent selection of only transfected cells and wild-type IE86 protein or a mutant IE86 protein were tested in permissive and nonpermissive cells. HCMV infection induced the entry of U373 cells into the S phase. All permissive cells infected with HCMV were blocked in cell cycle progression and could not divide. After either transduction or transfection and IE86 protein expression, the number of all permissive or nonpermissive cell types in the S phase increased significantly, but the cells could no longer divide. The IE72 protein did not have a significant effect on the S phase. Since IE86 protein inhibits cell cycle progression, the IE2 gene in a human fibroblast IE86 protein-expressing cell line was sequenced. The IE86 protein in these retrovirus-transduced cells has mutations in a critical region of the viral protein. The locations of the mutations and the function of the IE86 protein in controlling cell cycle progression are discussed.  相似文献   

14.
The varicella-zoster virus (VZV) genome has unique long (U(L)) and unique short (U(S)) segments which are flanked by internal repeat (IR) and terminal repeat (TR) sequences. The immediate-early 62 (IE62) protein, encoded by open reading frame 62 (ORF62) and ORF71 in these repeats, is the major VZV transactivating protein. Mutational analyses were done with VZV cosmids generated from parent Oka (pOka), a low-passage clinical isolate, and repair experiments were done with ORF62 from pOka and vaccine Oka (vOka), which is derived from pOka. Transfections using VZV cosmids from which ORF62, ORF71, or the ORF62/71 gene pair was deleted showed that VZV replication required at least one copy of ORF62. The insertion of ORF62 from pOka or vOka into a nonnative site in U(S) allowed VZV replication in cell culture in vitro, although the plaque size and yields of infectious virus were decreased. Targeted mutations in binding sites reported to affect interaction with IE4 protein and a putative ORF9 protein binding site were not lethal. Single deletions of ORF62 or ORF71 from cosmids permitted recovery of infectious virus, but recombination events repaired the defective repeat region in some progeny viruses, as verified by PCR and Southern hybridization. VZV infectivity in skin xenografts in the SCID-hu model required ORF62 expression; mixtures of single-copy recombinant Oka Delta 62 (rOka Delta 62) or rOka Delta 71 and repaired rOka generated by recombination of the single-copy deletion mutants were detected in some skin implants. Although insertion of ORF62 into the nonnative site permitted replication in cell culture, ORF62 expression from its native site was necessary for cell-cell spread in differentiated human skin tissues in vivo.  相似文献   

15.
16.
The IE62 protein, the primary regulatory protein of varicella-zoster virus (VZV) and the major component of the virion tegument, was an effective immunogen in the guinea pig model of VZV infection, whereas the ORF 29 gene product, a nonstructural DNA replication protein, did not elicit protection. All animals immunized with the ORF 29 protein had cell-associated viremia compared with 2 of 11 guinea pigs given the IE62 protein (P = 0.005). VZV was detected in ganglia from 38% of the animals given the ORF 29 protein and 44% of the control animals compared with 9% of the animals immunized with the IE62 protein (P = 0.04). In contrast to the IE62 protein, immunization with the ORF 29 protein did not prime the animals for an enhanced T-cell response upon challenge with infectious virus. The VZV IE62 protein has potential value as a vaccine component.  相似文献   

17.
S Mallory  M Sommer    A M Arvin 《Journal of virology》1997,71(11):8279-8288
The contributions of the glycoproteins gI (ORF67) and gE (ORF68) to varicella-zoster virus (VZV) replication were investigated in deletion mutants made by using cosmids with VZV DNA derived from the Oka strain. Deletion of both gI and gE prevented virus replication. Complete deletion of gI or deletions of 60% of the N terminus or 40% of the C terminus of gI resulted in a small plaque phenotype as well as reduced yields of infectious virus. Melanoma cells infected with gI deletion mutants formed abnormal polykaryocytes with a disrupted organization of nuclei. In the absence of intact gI, gE became localized in patches on the cell membrane, as demonstrated by confocal microscopy. A truncated N-terminal form of gI was transported to the cell surface, but its expression did not restore plaque morphology or infectivity. The fusogenic function of gH did not compensate for gI deletion or the associated disruption of the gE-gI complex. These experiments demonstrated that gI was dispensable for VZV replication in vitro, whereas gE appeared to be required. Although VZV gI was dispensable, its deletion or mutation resulted in a significant decrease in infectious virus yields, disrupted syncytium formation, and altered the conformation and distribution of gE in infected cells. Normal cell-to-cell spread and replication kinetics were restored when gI was expressed from a nonnative locus in the VZV genome. The expression of intact gI, the ORF67 gene product, is required for efficient membrane fusion during VZV replication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号