首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO) was used to study the degradation of two mucin isoforms (mucin 2 and 13) and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4). In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell disruption.  相似文献   

2.
Vitamin A and the T helper 2 cytokines IL-4 and IL-13 play important roles in the induction of mucin gene expression and mucus hypersecretion. However, the effects of these agents on enzymes responsible for mucin glycosylation have received little attention. Here, we report the upregulation of core 2 beta1,6 N-acetylglucosaminyltransferase (C2GnT) activity both by all-trans retinoic acid (RA) and by IL-4 and IL-13 in the H292 airway epithelial cell line. Northern blotting analysis showed that the M isoform of C2GnT, which is expressed in mucus-secreting tissues and can form all mucin glycan beta1,6-branched structures, including core 2, core 4, and blood group I antigen, was upregulated by both RA and IL-4/13. The L isoform, which forms only the core 2 structure, was moderately upregulated by IL-4/13 but not by RA. Enhancement of the M isoform of C2GnT by RA was abolished by an inhibitor of RA receptor alpha, implicating RA receptor alpha in the effect of RA. Likewise, an inhibitor of the Janus kinase 3 pathway blocked the enhancing effects of IL-4/13 on the L and M isoforms of C2GnT, suggesting a role of this pathway in the upregulation of these two C2GnTs by these cytokines. Taken together, the results suggest that IL-4/13 T helper 2 cytokines and RA can alter the activity of enzymes that synthesize branching mucin carbohydrate structure in airway epithelial cells, potentially leading to altered mucin carbohydrate structure and properties.  相似文献   

3.
Human intestinal bacteria were grown in a 3-stage continuous culture system on a medium containing complex polysaccharides and proteins as carbon and nitrogen sources. Selected bacterial populations were enumerated and glycosidase, protease and arylamidase activities measured. Comparison of arylamidase and glycosidase activities in the multichamber system (MCS) and faeces showed that the predominant faecal enzymes were also produced by bacteria growing in the MCS. After 48 d operation, porcine gastric mucin (5.8 g/d) was independently fed to vessel 1. Elevated levels of volatile fatty acid (VFA) formation showed that the glycoprotein was actively fermented. The increase in carbohydrate availability as a result of breakdown of the mucin oligosaccharides stimulated bacterial growth and activities. The enzymological measurements showed that mucin increased production of both cell-bound and extracellular glycosidases, such as β-galactosidase, α-glucosidase and N-acetyl-β-glucosaminidase. Protease activities were profoundly influenced by mucin. These were largely cell-bound in non-mucin cultures but were predominantly extracellular and collagenolytic when mucin was present. Experiments with protease inhibitors showed that cysteine proteases were the major cell-bound and extracellular enzymes in both mucin and non-mucin cultures, but that serine and metalloproteases were also present. The effect of mucin on arylamidase formation was less marked, although there was increased production of these enzymes in vessels 1 and 2 of the MCS. These results suggest that host-produced substances such as mucin glycoprotein may play a role in modulating the growth and activity of bacteria growing in the human large intestine.  相似文献   

4.
Human intestinal bacteria were grown in a 3-stage continuous culture system on a medium containing complex polysaccharides and proteins as carbon and nitrogen sources. Selected bacterial populations were enumerated and glycosidase, protease and arylamidase activities measured. Comparison of arylamidase and glycosidase activities in the multichamber system (MCS) and faeces showed that the predominant faecal enzymes were also produced by bacteria growing in the MCS. After 48 d operation, porcine gastric mucin (5.8 g/d) was independently fed to vessel 1. Elevated levels of volatile fatty acid (VFA) formation showed that the glycoprotein was actively fermented. The increase in carbohydrate availability as a result of breakdown of the mucin oligosaccharides stimulated bacterial growth and activities. The enzymological measurements showed that mucin increased production of both cell-bound and extracellular glycosidases, such as beta-galactosidase, alpha-glucosidase and N-acetyl-beta-glucosaminidase. Protease activities were profoundly influenced by mucin. These were largely cell-bound in non-mucin cultures but were predominantly extracellular and collagenolytic when mucin was present. Experiments with protease inhibitors showed that cysteine proteases were the major cell-bound and extracellular enzymes in both mucin and non-mucin cultures, but that serine and metalloproteases were also present. The effect of mucin on arylamidase formation was less marked, although there was increased production of these enzymes in vessels 1 and 2 of the MCS. These results suggest that host-produced substances such as mucin glycoprotein may play a role in modulating the growth and activity of bacteria growing in the human large intestine.  相似文献   

5.
Chitosan is a biocompatible and biodegradable amino polysaccharide, which is soluble in aqueous solutions at pH < 6.5. It has been widely used for developing drug delivery systems because of its excellent mucoadhesive properties. Although many studies report on chitosan being mucoadhesive, the nature of interactions between chitosan and mucin remains poorly defined. Here, we have examined the role of primary amino groups and the role of electrostatic attraction, hydrogen bonding, and hydrophobic effects on aggregation of gastric mucin in the presence of chitosan. Reducing the number of amino groups through their half acetylation results in expansion of chitosan's pH-solubility window up to pH 7.4 but also reduces its capacity to aggregate mucin. We demonstrated that electrostatic attraction forces between chitosan and gastric mucin can be suppressed in the presence of 0.2 mol/L sodium chloride; however, this does not prevent the aggregation of mucin particles in the presence of this biopolymer. The presence of 8 mol/L urea or 10% v/v ethanol in solutions also affects mucin aggregation in the presence of chitosan, demonstrating the role of hydrogen bonding and hydrophobic effects, respectively, in mucoadhesion.  相似文献   

6.
Mucous secretions have a wide range of biological functions that are intimately linked with their rheological properties. In addition, many mucous secretions are exposed to significant stress and deformation during physiological function. This study has examined the rheological response of three mucous systems, native pig gastric mucus, purified mucin gels, and mucin alginate gels, to increasing applied stress to a level sufficient to induce flow behavior. A novel, frequency-dependent stress hardening was observed in all three systems. This hardening behavior may play a significant role in the ability of mucous systems to resist mechanical disruption in the physiological state.  相似文献   

7.
The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.  相似文献   

8.
Mucin glycoproteins in neoplasia   总被引:30,自引:0,他引:30  
Mucins are high molecular weight glycoproteins that are heavily glycosylated with many oligosaccharide side chains linked O-glycosidically to the protein backbone. With the recent application of molecular biological methods, the structures of apomucins and regulation of mucin genes are beginning to be understood. At least nine human mucin genes have been identified to date. Although a complete protein sequence is known for only three human mucins (MUC1, MUC2, and MUC7), common motifs have been identified in many mucins. The pattern of tissue and cell-specific expression of these mucin genes are emerging, suggesting a distinct role for each member of this diverse mucin gene family. In epithelial cancers, many of the phenotypic markers for pre-malignant and malignant cells have been found on the carbohydrate and peptide moieties of mucin glycoproteins. The expression of carbohydrate antigens appears to be due to modification of peripheral carbohydrate structures and the exposure of inner core region carbohydrates. The expression of some of the sialylated carbohydrate antigens appears to correlate with poor prognosis and increased metastatic potential in some cancers. The exposure of peptide backbone structures of mucin glycoproteins in malignancies appears to be due to abnormal glycosylation during biosynthesis. Dysregulation of tissue and cell-specific expression of mucin genes also occurs in epithelial cancers. At present, the role of mucin glycoproteins in various stages of epithelial cell carcinogenesis (including the preneoplastic state and metastasis), in cancer diagnosis and immunotherapy is under investigation.  相似文献   

9.
The precipitation of mucin by aluminium   总被引:2,自引:0,他引:2  
The interactions of Al with a mucin glycopeptide have been studied. A number of specific reactions were identified the nature of which were dependent upon the Al chemistry in the hydration environment. In particular, Al was observed to precipitate mucin and it is suggested that this proceeded via the intercalation of the hydroxide within the hydrated macroreticular network of the mucin biopolymer. This precipitation of mucin was visible by eye and abolished the viscosity of native mucin. Viscometry indicated that Al was bound by mucin at low pH. At pH > 3 Al formed a low molecular weight complex with mucin which was hydrolytically stable and was not precipitated at pH up to 8. In an additional and competitive reaction Al was bound by mucin and the resultant mucin–Al complex was suggested to be the precursor to self-assembled mucin–Al spheres identified in solution, by photon correlation spectroscopy, and in precipitate using selective histochemistry. The majority of these spherical structures were of sub-micron diameter and, through their interaction with each other, were probably responsible for the observed pH-dependent peaks of mucin solution viscosity. The larger spheres, between 20 and 80 μm in diameter, were only identified in isolated mucin/Al precipitates and, being comparatively rare, were unlikely to have influenced solution viscosities. These large spheres were observed to act as possible nucleation sites for the flocculation of mucin/Al precipitate. Al at concentrations as low as 0.015 mM induced changes in the rheological properties of mucin. Considering the ubiquitous nature of mucin and the degree to which it is conserved within biota the interactions of Al with mucin may have wide ranging implications for biological systems.  相似文献   

10.
Brunner's glands are unique to mammalian species and in eutherians are confined primarily to the submucosa of the proximal duodenum. In the majority of species examined, they begin at the gastrointestinal junction and extend for variable distances distally in the wall of the proximal small intestine. Ducts of individual glands empty either directly into the intestinal lumen or unite with overlying intestinal glands (crypts of Lieberkühn) dependent on the species. Secretory units of Brunner's glands consist of epithelial tubules that show frequent distal branchings. The secretory units, with the exception of those found in rabbits and horses, consist primarily of a mucin producing cell type. However, other cell types normally associated with the overlying intestinal epithelium may be encountered scattered within the secretory units reflecting the developmental origin of these glands. Secretion from Brunner's glands contributes to a layer of mucus that forms a slippery, viscoelastic gel that lubricates the mucosal lining of the proximal intestinal tract. The unique capacity of this mucus layer to protect delicate underlying epithelial surfaces is due primarily to the gel-forming properties of its glycoprotein molecules. Mucin glycoproteins produced by Brunner's glands consist primarily but not exclusively of O-linked oligosaccharides attached to the central protein core of the glycoprotein molecule. Human Brunner's glands produce class III mucin glycoproteins and are thought to be the product of mucin gene MUC6 which is assigned to chromosome 11 (11p15-11p15.5 chromosome region). In addition to mucin glycoproteins and a limited amount of bicarbonate, numerous additional factors (epidermal growth factor, trefoil peptides, bactericidal factors, proteinase inhibitors, and surface-active lipids) have been identified within the secretory product of Brunner's glands. These factors, incorporated into the mucus layer, guard against the degradation of this protective barrier and underlying mucosa by gastric acid, pancreatic enzymes, and other surface active agents associated with this region. Yet other factors produced by Brunner's glands function to provide active and passive immunological defense mechanisms, promote cellular proliferation and differentiation, as well as contribute factors that elevate the pH of luminal contents of this region by promoting secretion of the intestinal mucosa, pancreatic secretion and gall bladder contraction. Additional insights concerning the role of Brunner's glands in the mammalian gastrointestinal tract as well as their possible evolution in this class of vertebrates have been gained from a basic understanding of their pathobiology.  相似文献   

11.
Trypanosoma cruzi trans‐sialidase (TS) was identified three decades ago. TS catalyses a trans‐glycosylation reaction, transferring SA from sialylated donors to the terminal galactose mucin‐glycoconjugates, or non‐mucin galactyosyl‐glycoconjugates. It is an external surface protein that is also released from the parasite, displaying several binding properties in addition to its enzymatic function. TS structure has been solved and its catalytic properties are well known, providing tools for development of new inhibitors, as potential chemotherapeutic agents against Chagas’ disease. However, there are still several unsolved questions regarding TS role in the biology of T. cruzi and in the pathology of Chagas’ disease. In this review, we will describe the multifunctional roles of TS regarding the development of Chagas’ disease and propose that these multiple functions have to be considered in future investigations aiming to use TS as a drug target.  相似文献   

12.
The human large intestine is covered with a protective mucus coating, which is heavily colonized by complex bacterial populations that are distinct from those in the gut lumen. Little is known of the composition and metabolic activities of these biofilms, although they are likely to play an important role in mucus breakdown. The aims of this study were to determine how intestinal bacteria colonize mucus and to study physiologic and enzymatic factors involved in the destruction of this glycoprotein. Colonization of mucin gels by fecal bacteria was studied in vitro, using a two-stage continuous culture system, simulating conditions of nutrient availability and limitation characteristic of the proximal (vessel 1) and distal (vessel 2) colon. The establishment of bacterial communities in mucin gels was investigated by selective culture methods, scanning electron microscopy, and confocal laser scanning microscopy, in association with fluorescently labeled 16S rRNA oligonucleotide probes. Gel samples were also taken for analysis of mucin-degrading enzymes and measurements of residual mucin sugars. Mucin gels were rapidly colonized by heterogeneous bacterial populations, especially members of the Bacteroides fragilis group, enterobacteria, and clostridia. Intestinal bacterial populations growing on mucin surfaces were shown to be phylogenetically and metabolically distinct from their planktonic counterparts.  相似文献   

13.
The human large intestine is covered with a protective mucus coating, which is heavily colonized by complex bacterial populations that are distinct from those in the gut lumen. Little is known of the composition and metabolic activities of these biofilms, although they are likely to play an important role in mucus breakdown. The aims of this study were to determine how intestinal bacteria colonize mucus and to study physiologic and enzymatic factors involved in the destruction of this glycoprotein. Colonization of mucin gels by fecal bacteria was studied in vitro, using a two-stage continuous culture system, simulating conditions of nutrient availability and limitation characteristic of the proximal (vessel 1) and distal (vessel 2) colon. The establishment of bacterial communities in mucin gels was investigated by selective culture methods, scanning electron microscopy, and confocal laser scanning microscopy, in association with fluorescently labeled 16S rRNA oligonucleotide probes. Gel samples were also taken for analysis of mucin-degrading enzymes and measurements of residual mucin sugars. Mucin gels were rapidly colonized by heterogeneous bacterial populations, especially members of the Bacteroides fragilis group, enterobacteria, and clostridia. Intestinal bacterial populations growing on mucin surfaces were shown to be phylogenetically and metabolically distinct from their planktonic counterparts.  相似文献   

14.
Aggregation phenomena in aqueous solutions of purified human tracheobronchial mucin have been studied by rheological methods, steady-state fluorescence, quasielastic light scattering, and spin probe techniques. At temperatures below 30 degrees C and concentrations above 15 mg/mL and in the absence of chaotropic agents, mucin solutions are viscoelastic gels. A gel-sol transition is observed at temperatures above 30 degrees C that is manifested by the diminishing storage modulus and a loss tangent above unity throughout the studied frequency range of the oscillatory shear. No decline in the mucin molecular weight is observed by size-exclusion chromatography above 30 degrees C in the absence of redox agents or proteolytic enzymes. Aggregation of hydrophobic protein segments of the mucin chains at 37 degrees C is indicated by QELS experiments. The decreasing polarity of the microenvironment of pyrene solubilized into mucin solutions at temperatures above 30 degrees C, concomitant with the gel-sol transition, shows the hydrophobicity of the formed aggregates. ESR spectra of the fatty acid spin probe, 16-doxylstearic acid indicate that the aggregate-aqueous interface becomes more developed at elevated temperatures.  相似文献   

15.
16.
An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated.  相似文献   

17.
Ceramidase is a key enzyme involved in regulating cellular levels of ceramide, sphingosine, and possibly sphigosine 1-phosphate and thus could modulate sphingolipid signaling. Here we report that O-glycosylation of the mucin-like domain of neutral ceramidases was required for localization to the surface of plasma membranes. The deduced amino acid sequences of the mammalian enzymes contain a serine-threonine-rich domain (mucin box), which follows the signal/anchor sequence, whereas those of bacterial and invertebrate enzymes completely lack a mucin box, suggesting that the specific domain has been acquired during evolution. In HEK293 cells overexpressing ceramidase, the enzyme was not only secreted into the medium after cleavage of the NH(2)-terminal signal/anchor sequence but also localized at the plasma membrane as a type II integral membrane protein. Lectin blot analysis using peanut agglutinin revealed that the mucin box of the enzyme is highly glycosylated with O-glycans. Interestingly, a mutant lacking the mucin box or possible O-glycosylation sites in the mucin box was secreted into the medium but not localized at the surface of the cells. Furthermore, a mucin box-fused chimera green fluorescent protein (GFP), but not GFP itself, with the signal/anchor sequence was distributed on the surface of the cells. These results suggest that O-glycosylation of the mucin box retains proteins on the plasma membranes. We also found that the 112-kDa membrane-bound enzyme from mouse kidney is O-glycosylated, whereas the 94-kDa soluble enzyme from liver is not. These results clearly indicate that post-translational modification of the enzyme with O-glycans is tissue-specific and helps the enzyme to localize at the surface of plasma membranes as a type II membrane protein.  相似文献   

18.
In the present study, the impact of chromium(III) complexes ([Cr(salen)(H2O)2](+) (1), [Cr(en)3]3+ (2) and [Cr(EDTA)(H2O)]- (3)) on the biophysical properties of mucin like specific viscosity, zeta potential and particle size has been investigated. It is evident from the present investigation that the nature of the coordinated ligand has a major role to play in bringing about the changes in the physical characteristics of the glycoprotein. It was observed that (1) and (3) because of their coordinate mode of binding lead to decrease in the specific viscosity of mucin, whereas (2) on the other hand was found to bring about drastic increase in the mucin viscosity due to sol-gel transition in the mucin conformation. Complex (2) was found to gradually lower the zeta potential value of mucin (particle size=51.5 nm) from -24.8 +/- 1.31 mV to -0.58 +/- 0.30 mV, which reveals aggregation (particle size=216 nm) and subsequent sedimentation of mucin with an increase in the average diameter of mucin particles. The binding of (2) to mucin was found to impart resistance to mucin against both tryptic and O-glycanase digestion, suggesting that, the aggregation of mucin causes conformational as well as configurational changes in the glycoprotein; thus perturbing the location of carbohydrate domains.  相似文献   

19.
The original hygiene hypothesis suggests that early childhood respiratory infections preceding allergen exposure may decrease the prevalence of allergic diseases. We have recently demonstrated that Mycoplasma pneumoniae infection preceding allergen exposure reduced allergic responses in mice. However, the molecular mechanisms underlying the protective role of M. pneumoniae in allergic responses, particularly airway mucin production, remain unclear. Wild-type and Toll-like receptor 2 (TLR2)-deficient mice with a respiratory M. pneumoniae infection preceding allergen (ovalbumin) challenge were utilized to determine the regulatory role of TLR2-IFN-gamma signaling pathway in airway mucin expression. Furthermore, air-liquid interface cultures of mouse primary tracheal epithelial cells were performed to examine the effects of IFN-gamma on mucin expression. In wild-type mice, M. pneumoniae infection preceding allergen challenge significantly reduced airway mucins but increased IFN-gamma. In sharp contrast, in TLR2-deficient mice, M. pneumoniae preceding allergen challenge resulted in increased mucin protein without a noticeable change of IFN-gamma. In cultured mouse primary tracheal epithelial cells, IFN-gamma was shown to directly inhibit mucin expression in a dose-dependent manner. Our study demonstrates for the first time that a respiratory M. pneumoniae infection preceding allergen challenge reduces airway epithelial mucin expression in part through TLR2-IFN-gamma signaling pathway. A bacterial infection in asthmatic subjects with weakened TLR2-IFN-gamma signaling may result in an exaggerated airway mucin production.  相似文献   

20.
Mechanical spectroscopy has been used to study the structure and properties of pig small intestinal and colonic adherent mucus gel. Both mucus secretions had properties of viscoelastic gels, but that from the small intestine was substantially weaker in quality. Small intestinal mucus gel was disrupted by acid (pH 1), detergents (bile) and protein denaturants while that from the colon remained stable following these treatments. Concentration of purified colonic mucin produced a gel with the same rheological properties as the native secretion. Purified small intestinal mucin when concentrated produced a stronger gel than the native secretion and, in contrast to the latter, one which was not disrupted by acid or denaturants. The instability of native small intestinal mucus was shown not to be a function of the mucin components (which alone could account for the gel-forming properties), but to arise from the presence of insoluble material largely from sloughed mucosal cells. These studies show (1) that mucus gels from the colon and small intestine have similar mechanical behaviour and properties to those from the stomach and duodenum, and (2) emphasise the caution that should be exercised when interpreting the rheological properties of mucus preparations, particularly with respect to their content of mucosal cellular material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号