首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane binding via C-terminal amphiphilic alpha-helical structure is a novel anchoring mechanism, which has been characterised in a number of prokaryotic carboxypeptidases. Here, we have used graphical and DWIH analyses to ascertain if a similar anchoring mechanism may be utilised by the Escherichia coli KpsE protein in its binding to the periplasmic face of the inner membrane. The results of these analyses have been compared to those obtained for similar analyses of the C-terminal sequences of E. coli penicillin-binding proteins (PBPs) PBP5 and PBP6 which, are known to function as amphiphilic alpha-helical membrane anchors, and of melittin, a known membrane-interactive toxin. We have also used FTIR spectroscopy and lipid phase transition temperature analysis to investigate the interaction of a peptide homologue of KpsE C-terminal region with membrane lipid. Our results suggest that the KpsE C-terminal sequence has the potential to form an amphiphilic alpha-helix and that this alpha-helix could feature in the membrane binding of the protein.  相似文献   

2.
Escherichia coli penicillin-binding protein 5 (PBP5) anchors to the inner membrane in a pH-dependent manner via a C-terminal amphiphilic alpha-helix. Low pH was found to enhance both levels of PBP5 membrane anchoring and levels of alpha-helicity in an aqueous PBP5 C-terminal homologue, which led to the suggestion that levels of PBP5 membrane anchoring are related to levels of PBP5 C-terminal alpha-helicity. Here we have used Fourier-transformed infrared spectroscopy (FTIR) and a peptide homologue of the PBP5 C-terminal sequence to investigate the effect of pH on the conformational behavior of this sequence at a lipid interface and on its ability to interact with lipid. Our results suggest that the membrane-anchoring mechanism of PBP5 is unlikely to involve conformational change in the protein's C-terminal region and may therefore involve conformational changes in the protein's ectomembranous domain.  相似文献   

3.
Penicillin-binding protein 5 (PBP5) has been previously identified as a component of the inner membrane of Escherichia coli and we present here further evidence that PBP5 is tightly bound to the membrane. To investigate the regions of PBP5 involved in membrane binding we have constructed a series of C-terminal deletions and shown that the removal of as few as 10 amino acids results in the release of the truncated protein into the periplasm. The C terminus, therefore, appears to be important for interaction with the membrane; however, inspection of the amino acid sequence does not reveal extended runs of hydrophobicity typical of a membrane anchor. Thus we conclude that PBP5 is anchored to the inner membrane by a mechanism not previously described.  相似文献   

4.
Escherichia coli low molecular mass penicillin-binding proteins (PBPs) include PBP4, PBP5, PBP6 and PBP6b. Evidence suggests that these proteins interact with the inner membrane via C-terminal amphiphilic alpha-helices. Nonetheless, the membrane interactive mechanisms utilized by the C-terminal anchors of PBP4 and PBP6b show differences to those utilized by PBP5 and PBP6. Here, hydrophobic moment-based analyses have predicted that, in contrast to the PBP4 and PBP6b C-termini, those of PBP5 and PBP6 are candidates to form oblique orientated alpha-helices. Consistent with these predictions, Fourier transform infrared spectroscopy (FTIR) has shown that peptide homologs of the PBP4 and PBP5 C-terminal regions, P4 and P5, respectively, both possessed the ability to adopt alpha-helical structure in the presence of lipid. However, whereas P4 appeared to show a preference for interaction with the surface regions of dimyristoylglycerophosphoethanolamine and dimyristoylglycerophosphoglycerol membranes, P5 appeared to show deep penetration of both these latter membranes and dimyristoylglycerophosphocholine membranes. Based on these results, we have suggested that in contrast to the membrane anchoring of the PBP4 and PBP6b C-terminal alpha-helices, the PBP5 and PBP6 C-terminal alpha-helices may possess hydrophobicity gradients and penetrate membranes in an oblique orientation.  相似文献   

5.
Small (10 residue) C-terminal deletions of PBP5 cause release of this inner membrane protein into the periplasm, indicating disruption of the membrane binding domain. To define the extent of the membrane anchoring domain, oligonucleotide-directed mutagenesis was used to introduce both single amino acid changes and novel restriction sites into the DNA, allowing subsequent construction of precise internal deletions. The 10 C-terminal amino acid residues possess very weak membrane anchoring potential. By extending the sequence to 18 residues membrane binding equivalent to that of authentic PBP5 was achieved. A proline substitution in this region, breaking a potential alpha-helix, also disrupts the membrane binding domain. These results are discussed with respect to the amphiphilicity of the C-terminal sequence when arranged in an alpha-helix.  相似文献   

6.
Small (10 residue) C-terminal deletions of PBP5 cause release of this Inner membrane protein into the periplasm, indicating disruption of the membrane binding domain. To define the extent of the membrane anchoring domain, oligonucleotide-directed mutagenesis was used to introduce both single amino acid changes and novel restriction sites into the DN A, allowing subsequent construction of precise internal deletions. The 10 C-terminal amino acid residues possess very weak membrane anchoring potential. By extending the sequence to 18 residues membrane binding equivalent to that of authentic PBP5 was achieved. A proline substitution in this region, breaking a potential α-helix, also disrupts the membrane binding domain. These results are discussed with respect to the amphi-philicity of the C-terminal sequence when arranged in an α-helix.  相似文献   

7.
Abstract Escherichia coli penicillin-binding protein 5 (PBP5) is anchored to the periplasmic face of the inner membrane via a C-terminal amphiphilic α-helix. The results of washing experiments have suggested an electrostatic contribution to the anchoring mechanism which may involve the cationic region of the C-terminal α-helix. Similarities between this anchor domain and some surface active agents, such as melittin, suggest that the cationic region of the PBP5 anchor may require the presence of anionic phospholipids for membrane interaction. Washing experiments performed on membranes of HDL11, an E. coli mutant in which the expression of the major anionic phospholipids is under lac control, found no such requirement. The results are discussed in relation to the hypothesis that the cationic region may interact with other sources of negative charge, possibly arising from a PBP complex.  相似文献   

8.
Escherichia coli has 12 recognized penicillin binding proteins (PBPs), four of which (PBPs 4, 5, and 6 and DacD) have DD-carboxypeptidase activity. Although the enzymology of the DD-carboxypeptidases has been studied extensively, the in vivo functions of these proteins are poorly understood. To explain why E. coli maintains four independent loci encoding enzymes of considerable sequence identity and comparable in vitro activity, it has been proposed that the DD-carboxypeptidases may substitute for one another in vivo. We tested the validity of this equivalent substitution hypothesis by investigating the effects of these proteins on the aberrant morphology of DeltadacA mutants, which produce no PBP 5. Although cloned PBP 5 complemented the morphological phenotype of a DeltadacA mutant lacking a total of seven PBPs, controlled expression of PBP 4, PBP 6, or DacD did not. Also, a truncated PBP 5 protein lacking its amphipathic C-terminal membrane binding sequence did not reverse the morphological defects and was lethal at low levels of expression, implying that membrane anchoring is essential for the proper functioning of PBP 5. By examining a set of mutants from which multiple PBP genes were deleted, we found that significant morphological aberrations required the absence of at least three different PBPs. The greatest defects were observed in cells lacking, at minimum, PBPs 5 and 6 and one of the endopeptidases (either PBP 4 or PBP 7). The results further differentiate the roles of the low-molecular-weight PBPs, suggest a functional significance for the amphipathic membrane anchor of PBP 5 and, when combined with the recently determined crystal structure of PBP 5, suggest possible mechanisms by which these PBPs may contribute to maintenance of a uniform cell shape in E. coli.  相似文献   

9.
Four low-molecular-weight penicillin binding proteins (LMW PBPs) of Escherichia coli are closely related and have similar DD-carboxypeptidase activities (PBPs 4, 5, and 6 and DacD). However, only one, PBP 5, has a demonstrated physiological function. In its absence, certain mutants of E. coli have altered diameters and lose their uniform outer contour, resulting in morphologically aberrant cells. To determine what differentiates the activities of these LMW PBPs, we constructed fusion proteins combining portions of PBP 5 with fragments of other DD-carboxypeptidases to see which hybrids restored normal morphology to a strain lacking PBP 5. Functional complementation occurred when truncated PBP 5 was combined with the terminal membrane anchor sequences of PBP 6 or DacD. However, complementation was not restored by the putative carboxy-terminal anchor of PBP 4 or by a transmembrane region of the osmosensor protein ProW, even though these hybrids were membrane bound. Site-directed mutagenesis of the carboxy terminus of PBP 5 indicated that complementation required a generalized amphipathic membrane anchor but that no specific residues in this region seemed to be required. A functional fusion protein was produced by combining the N-terminal enzymatic domain of PBP 5 with the C-terminal beta-sheet domain of PBP 6. In contrast, the opposite hybrid of PBP 6 to PBP 5 was not functional. The results suggest that the mode of PBP 5 membrane anchoring is important, that the mechanism entails more than a simple mechanical tethering of the enzyme to the outer face of the inner membrane, and that the physiological differences among the LMW PBPs arise from structural differences in the DD-carboxypeptidase enzymatic core.  相似文献   

10.
tmrB is the gene responsible for tunicamycin resistance in Bacillus subtilis. It is predicted that an increase in tmrB gene expression makes B. subtilis tunicamycin resistant. To examine the tmrB gene product, we produced the tmrB gene product in Escherichia coli by using the tac promoter. TmrB protein was found not only in the cytoplasm fraction but also in the membrane fraction. Although TmrB protein is entirely hydrophilic and has no hydrophobic stretch of amino acids sufficient to span the membrane, its C-terminal 18 amino acids could form an amphiphilic alpha-helix. Breaking this potential alpha-helix by introducing proline residues or a stop codon into this region caused the release of this membrane-bound protein into the cytoplasmic fraction, indicating that the C-terminal 18 residues were essential for membrane binding. On the other hand, TmrB protein has an ATP-binding consensus sequence in the N-terminal region. We have tested whether this sequence actually has the ability to bind ATP by photoaffinity cross-linking with azido-[alpha-32P]ATP. Wild-type protein bound azido-ATP well, but mutants with substitutions in the consensus amino acids were unable to bind azido-ATP. These C-terminal or N-terminal mutant genes were unable to confer tunicamycin resistance on B. subtilis in a multicopy state. It is concluded that TmrB protein is a novel ATP-binding protein which is anchored to the membrane with its C-terminal amphiphilic alpha-helix.  相似文献   

11.
An internal 630-bp DNA fragment of the gene encoding penicillin-binding protein 3 (PBP 3) (dacA) of Streptococcus pneumoniae was identified in a lambda gt11 gene bank screened with anti-PBP 3 antiserum. The deduced 210-amino-acid sequence showed a high degree of homology to the low-molecular-weight PBPs 5 and 6 of Escherichia coli and Bacillus subtilis PBP 5. Viable mutants lacking a C-terminal part of PBP 3 were obtained after a plasmid containing the dacA fragment was integrated into the PBP 3 gene by homologous recombination. The truncated PBP 3* was still active in terms of beta-lactam binding. Most PBP 3 was found in the growth medium, indicating that membrane anchoring of PBP 3 is provided by the C terminus, as has been shown for other D,D-carboxypeptidases. The mutant cells grew with a slower generation time than the wild type in the shape of irregular enlarged spheres. In addition, as revealed by electron microscopy, cell separation was severely affected, septa were found unevenly distributed at multiple sites within the cells, and the murein layer appeared variable in thickness.  相似文献   

12.
Abstract Low-affinity penicillin binding proteins are particular membrane proteins, in several Gram-positive bacteria, which are involved in β-lactam antibiotic resistance. The structural gene for the low-affinity penicillin binding protein 5 (PBP5) of Enterococcus faecalis was cloned and sequenced. From the sequence of the 3378 bp, a 2040 bp coding region was identified. From biochemical analysis it emerges that E. faecalis PBP5 is a type II membrane protein with an uncleaved N-terminal and is composed of 679 amino acids with a molecular weight of 74055. This protein showed 48 and 33% of identity with Enterococcus hirae PBP5 and Staphylococcus aureus PBP2a, both low-affinity PBPs involved in β-lactam resistance. Anti-PBP5 antibodies cross-reacted with a membrane protein present in other species of enterococci, but the entire gene fragment cloned hybridized only with DNAs of E. faecalis strains, thus suggesting that genes coding for low-affinity PBPs of enterococci are not stictly homologous. In this experiment digoxigenin-labelled E. faecalis DNA was used.  相似文献   

13.
The membrane-bound 43,000-Mr penicillin-binding protein no. 6 (PBP6) of Enterococcus hirae consists of a 30,000-Mr DD-peptidase/penicillin-binding domain and a approximately 130-residue C-terminal appendage. Removal of this appendage by trypsin proteolysis has no marked effect on the catalytic activity and penicillin-binding capacity of the PBP. Anchorage of the PBP in the membrane appears to be mediated by a short 15-20-residue stretch at the C-terminal end of the appendage. The sequence of the 50-residue N-terminal region of the PBP shows high degree of homology with the sequences of the corresponding regions of the PBPs5 of Escherichia coli and Bacillus subtilis. On this basis the active-site serine residue occurs at position 35 in the enterococcal PBP.  相似文献   

14.
Plasmids for high-level expression of penicillin-binding protein 6 (PBP6) were constructed, giving rise to overproduction of PBP6 under the control of the lambda pR promoter in either the periplasmic or the cytoplasmic space. In contrast to penicillin-binding protein 5 (PBP5), the presence of high amounts of PBP6 in the periplasm as well as in the cytoplasm did not result in growth as spherical cells or in lysis. Deletion of the C-terminal membrane anchor of PBP6 resulted in a soluble form of the protein (PBP6s350). Electron micrographs of thin sections of cells overexpressing both native membrane-bound and soluble PBP6 in the periplasm revealed a polar retraction of the cytoplasmic membrane. Cytoplasmic overexpression of native PBP6 gave rise to the formation of membrane vesicles, whereas the soluble PBP6 formed inclusion bodies in the cytoplasm. Both the membrane-bound and the soluble forms of PBP6 were purified to homogeneity by using the immobilized dye Procion rubine MX-B. Purified preparations of PBP6 and PBP6s350 formed a 14[C]penicillin-protein complex at a 1:1 stoichiometry. The half-lives of the complexes were 8.5 and 6 min, respectively. In contrast to PBP5, no DD-carboxypeptidase activity could be detected for PBP6 by using bisacetyl-L-Lys-D-Ala-D-Ala and several other substrates. These findings led us to conclude that PBP6 has a biological function clearly distinct from that of PBP5 and to suggest a role for PBP6 in the stabilization of the peptidoglycan during stationary phase.  相似文献   

15.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

16.
Penicillin-binding protein 5 (PBP5) is a DD-carboxypeptidase, which cleaves the terminal D-alanine from the muramyl pentapeptide in the peptidoglycan layer of Escherichia coli and other bacteria. In doing so, it varies the substrates for transpeptidation and plays a key role in maintaining cell shape. In this study, we have analyzed the oligomeric state of PBP5 in detergent and in its native environment, the inner membrane. Both approaches indicate that PBP5 exists as a homo-oligomeric complex, most likely as a homo-dimer. As the crystal structure of the soluble domain of PBP5 (i.e., lacking the membrane anchor) shows a monomer, we used our experimental data to generate a model of the homo-dimer. This model extends our understanding of PBP5 function as it suggests how PBP5 can interact with the peptidoglycan layer. It suggests that the stem domains interact and the catalytic domains have freedom to move from the position observed in the crystal structure. This would allow the catalytic domain to have access to pentapeptides at different distances from the membrane.  相似文献   

17.
Penicillin-binding protein 2 (PBP 2) has long been known to be essential for rod-shaped morphology in gram-negative bacteria, including Escherichia coli and Pseudomonas aeruginosa. In the course of earlier studies with P. aeruginosa PBP 2, we observed that E. coli was sensitive to the overexpression of its gene, pbpA. In this study, we examined E. coli overproducing both P. aeruginosa and E. coli PBP 2. Growth of cells entered a stationary phase soon after induction of gene expression, and cells began to lyse upon prolonged incubation. Concomitant with the growth retardation, cells were observed to have changed morphologically from typical rods into enlarged spheres. Inactive derivatives of the PBP 2s were engineered, involving site-specific replacement of their catalytic Ser residues with Ala in their transpeptidase module. Overproduction of these inactive PBPs resulted in identical effects. Likewise, overproduction of PBP 2 derivatives possessing only their N-terminal non-penicillin-binding module (i.e., lacking their C-terminal transpeptidase module) produced similar effects. However, E. coli overproducing engineered derivatives of PBP 2 lacking their noncleavable, N-terminal signal sequence and membrane anchor were found to grow and divide at the same rate as control cells. The morphological effects and lysis were also eliminated entirely when overproduction of PBP 2 and variants was conducted with E. coli MHD79, a strain lacking six lytic transglycosylases. A possible interaction between the N-terminal domain of PBP 2 and lytic transglycosylases in vivo through the formation of multienzyme complexes is discussed.  相似文献   

18.
Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin‐binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of β‐lactams.  相似文献   

19.
The in vivo membrane assembly of the mannitol permease, the mannitol Enzyme II (IImtl) of the Escherichia coli phosphotransferase system, has been studied employing molecular genetic approaches. Removal of the N-terminal amphiphilic leader of the permease and replacement with a short hydrophobic sequence resulted in an inactive protein unable to transport mannitol into the cell or catalyze either phosphoenol-pyruvate-dependent or mannitol 1-phosphate-dependent mannitol phosphorylation in vitro. The altered protein (68 kDa) was quantitatively cleaved by an endogenous protease to a membrane-associated 39-kDa fragment and a soluble 28-kDa fragment as revealed by Western blot analyses. Overproduction of the wild-type plasmid-encoded protein also led to cleavage, but repression of the synthesis of the plasmid-encoded enzyme by inclusion of glucose in the growth medium prevented cleavage. Several mtlA-phoA gene fusions encoding fused proteins with N-terminal regions derived from the mannitol permease and C-terminal regions derived from the mature portion of alkaline phosphatase were constructed. In the first fusion protein, F13, the N-terminal 13-aminoacyl residue amphiphilic leader sequence of the mannitol permease replaced the hydrophobic leader sequence of alkaline phosphatase. The resultant fusion protein was inefficiently translocated across the cytoplasmic membrane and became peripherally associated with both the inner and outer membranes, presumably via the noncleavable N-terminal amphiphilic sequence. The second fusion protein, F53, in which the N-terminal 53 residues of the mannitol permease were fused to alkaline phosphatase, was efficiently translocated across the cytoplasmic membrane and was largely found anchored to the inner membrane with the catalytic domain of alkaline phosphatase facing the periplasm. This 53-aminoacyl residue sequence included the amphiphilic leader sequence and a single hydrophobic, potentially transmembrane, segment. Analyses of other MtlA-PhoA fusion proteins led to the suggestion that internal amphiphilic segments may function to facilitate initiation of polypeptide trans-membrane translocation. The dependence of IImtl insertion on the N-terminal amphiphilic leader sequence was substantiated employing site-specific mutagenesis. The N-terminal sequence of the native permease is Met-Ser-Ser-Asp-Ile-Lys-Ile-Lys-Val-Gln-Ser-Phe-Gly.... The following point mutants were isolated, sequenced, and examined regarding the effects of the mutations on insertion of IImtl into the membrane: 1) S3P; 2) D4P; 3) D4L; 4) D4R; 5) D4H; 6) I5N; 7) K6P; and 8) K8P.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We have determined the nucleotide sequence of the pbpA gene encoding penicillin-binding protein (PBP) 2 of Escherichia coli. The coding region for PBP 2 was 1899 base pairs in length and was preceded by a possible promoter sequence and two open reading frames. The primary structure of PBP 2, deduced from the nucleotide sequence, comprised 633 amino acid residues. The relative molecular mass was calculated to be 70867. The deduced sequence agreed with the NH2-terminal sequence of PBP 2 purified from membranes, suggesting that PBP 2 has no signal peptide. The hydropathy profile suggested that the NH2-terminal hydrophobic region (a stretch of 25 non-ionic amino acids) may anchor PBP 2 in the cytoplasmic membrane as an ectoprotein. There were nine homologous segments in the amino acid sequence of PBP 2 when compared with PBP 3 of E. coli. The active-site serine residue of PBP 2 was predicted to be Ser-330. Around this putative active-site serine residue was found the conserved sequence of Ser-Xaa-Xaa-Lys, which has been identified in all of the other E. coli PBPs so far studied (PBPs 1A, 1B, 3, 5 and 6) and class A and class C beta-lactamases. In the higher-molecular-mass PBPs 1A, 1B, 2 and 3, Ser-Xaa-Xaa-Lys-Pro was conserved. In the putative peptidoglycan transpeptidase domain there were six amino acid residues, which are common only in the PBPs of higher molecular mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号