首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria remains a human disease of global significance and a major cause of high infant mortality in endemic nations. Parasites of the genus Plasmodium cause the disease by degrading human hemoglobin as a source of amino acids for their growth and maturation. Hemoglobin degradation is initiated by aspartic proteases, termed plasmepsins, with a cleavage at the alpha-chain between residues Phe33 and Leu34. Plasmepsin II is one of the four catalytically active plasmepsins that has been identified in the food vacuole of Plasmodium falciparum. Novel crystal structures of uncomplexed plasmepsin II as well as the complex with a potent inhibitor have been refined with data extending to resolution limits of 1.9A and 2.7A, and to R factors of 17% and 18%, respectively. The inhibitor, N-(3-[(2-benzo[1,3]dioxol-5-yl-ethyl)[3-(1-methyl-3-oxo-1,3-dihydro-isoindol-2-yl)-propionyl]-amino]-1-benzyl-2-(hydroxypropyl)-4-benzyloxy-3,5-dimethoxy-benzamide, belongs to a family of potent non-peptidic inhibitors that have large P1' groups. Such inhibitors could not be modeled into the binding cavity of the structure of plasmepsin II in complex with pepstatin A. Our structures reveal that the binding cavities of the new complex and uncomplexed plasmepsin II are considerably more open than that of the pepstatin A complex, allowing for larger heterocyclic groups in the P1', P2' and P2 positions. Both complexed and uncomplexed plasmepsin II crystallized in space group P2, with one monomer in the asymmetric unit. The structures show extensive interlocking of monomers around the crystallographic axis of symmetry, with areas in excess of 2300A(2) buried at the interface, and a loop of one monomer interacting with the binding cavity of the 2-fold related monomer. Electron density for this loop is only fully ordered in the complexed structure.  相似文献   

2.
  1. Download : Download high-res image (199KB)
  2. Download : Download full-size image
  相似文献   

3.
Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues.  相似文献   

4.
5.
6.
The analysis of the structural similarity between Candida albicans Sap2 and HIV-1 aspartic proteases by molecular modeling gave insight into the common requirements for inhibition of both targets. Structure superimposition of Sap2 and HIV-1 protease confirmed the similarity between their active sites and flap regions. HIV-1 protease inhibitors herein investigated can fit the active site of Sap2, adopting very similar ligand-backbone conformations. In particular, key anchoring sites consisting of Gly85 in Sap2 and Ile50 in HIV-1 protease, both belonging to their corresponding flap regions, were found as elements of a similar binding-mode interaction. The knowledge of the molecular basis for binding to both Sap2 and HIV-1 proteases may ultimately lead to the development of single inhibitor acting on both targets.  相似文献   

7.
Clinical inhibitor amprenavir (APV) is less effective on HIV‐2 protease (PR2) than on HIV‐1 protease (PR1). We solved the crystal structure of PR2 with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR1 mutant (PR1M) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR2. PR1M more closely resembled PR2 than PR1 in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR1M with APV, DRV, and SQV were compared with available PR1 and PR2 complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR1M and PR1, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR1M. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR1M and PR2 relative to the strong hydrogen bonds observed in PR1, consistent with 15‐ and 19‐fold weaker inhibition, respectively. Overall, PR1M partially replicates the specificity of PR2 and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV‐2.  相似文献   

8.
The structure of a complex between a hexapeptide-based inhibitor, MVT-101, and the chemically synthesized (Aba 67,95,167,195; Aba: l-α-amino-n-butyric acid) protease from the human immunodeficiency virus (HIV-1), reported previously at 2.3 Å has now been refined to a crystallographic R factor of 15.4% at 2.0 Å resolution. Root mean square deviations from ideality are 0.18 Å for bond lengths and 2.4° for the angles. The inhibitor can be fitted to the difference electron density map in two alternative orientations. Drastic differences are observed for positions and interactions at P3/S3 and P3′/S3′ subsites of the two orientations due to different crystallographic environments. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Drug-resistant strains are rapidly selected during AIDS therapy because of the high rate of mutation in HIV. In this report, we present an evolutionary simulation method for analysis of viral mutation and its use for optimization of HIV-1 protease drugs to improve their robustness in the face of resistance mutation. We first present an analysis of the range of resistant mutants that produce viable viruses by using a volume-based viral fitness model. Then, we analyze how this range of mutant proteases allows development of resistance to an optimal inhibitor previously designed by computational coevolution techniques. Finally, we evaluate the resistance patterns of commercially available drugs, and we discuss how resistance might be overcome by optimizing the size of specific side-chains of these inhibitors.  相似文献   

10.
Bihani S  Das A  Prashar V  Ferrer JL  Hosur MV 《Proteins》2009,74(3):594-602
HIV-1 protease is an effective target for design of different types of drugs against AIDS. HIV-1 protease is also one of the few enzymes that can cleave substrates containing both proline and nonproline residues at the cleavage site. We report here the first structure of HIV-1 protease complexed with the product peptides SQNY and PIV derived by in situ cleavage of the oligopeptide substrate SQNYPIV, within the crystals. In the structure, refined against 2.0-A resolution synchrotron data, a carboxyl oxygen of SQNY is hydrogen-bonded with the N-terminal nitrogen atom of PIV. At the same time, this proline nitrogen atom does not form any hydrogen bond with catalytic aspartates. These two observations suggest that the protonation of scissile nitrogen, during peptide bond cleavage, is by a gem-hydroxyl of the tetrahedral intermediate rather than by a catalytic aspartic acid.  相似文献   

11.
【目的】圣路易斯脑炎病毒(St. Louis encephalitis virus,SLEV)属于黄病毒科,是一种单股正链RNA病毒。黄病毒编码的非结构蛋白NS3在病毒复制以及多聚蛋白加工过程中起着重要作用,NS2B是其发挥作用的重要辅助因子。因此,NS2B-NS3蛋白酶复合物是抗病毒药物的重要靶标。本研究旨在构建SLEV NS2B-NS3蛋白酶的原核表达系统并建立其抑制剂的高通量筛选方法,从而发现其小分子抑制剂。【方法】通过PCR扩增SLEVNS2B-NS3蛋白的编码区,构建原核表达质粒;在大肠杆菌BL21(DE3)中,经异丙基硫代半乳糖苷(Isopropyl β-D-thiogalactoside)诱导得到可溶性的NS2B-NS3蛋白,并用镍亲和层析方法进行纯化;基于荧光共振能量转移(Fluorescence resonance energy transfer)技术检测NS2B-NS3蛋白酶活性,建立其抑制剂的高通量筛选平台。【结果】SLEV NS2B-NS3蛋白酶纯化程度高达95%以上,基于酶活测定的抑制剂筛选平台准确可行。对700多个上市药物进行筛选后,发现原花青素对SLEVNS2B-NS3蛋白酶具有明显的抑制活性。【结论】本研究为SLEVNS2B-NS3蛋白酶抑制剂提供了一种操作方便、高通量的筛选方法,并首次发现了原花青素具有抑制SLEV NS2B-NS3蛋白酶活性的功能,可以作为治疗SLEV感染的潜在靶向药物。  相似文献   

12.
A series of substrate analogue inhibitors of the serine protease HAT, containing a 4-amidinobenzylamide moiety as the P1 residue, was prepared. The most potent compounds possess a basic amino acid in the d-configuration as P3 residue. Whereas inhibitor 4 (Ki 13 nM) containing proline as the P2 residue completely lacks selectivity, incorporation of norvaline leads to a potent inhibitor (15, Ki 15 nM) with improved selectivity for HAT in comparison to the coagulation proteases thrombin and factor Xa or the fibrinolytic plasmin. Selected inhibitors were able to suppress influenza virus replication in a HAT-expressing MDCK cell model.  相似文献   

13.
Six models of the catalytic site of HIV-1 protease complexed with a reduced peptide inhibitor, MVT-101, were investigated. These studies focused on the details of protonation of the active site, its total net charge and hydrogen bonding pattern, which was consistent with both the observed coplanar configuration of the acidic groups of the catalytic aspartates (Asp-25 and Asp-125) and the observed binding mode of the inhibitor. Molecular dynamic simulations using AMBER 4.0 indicated that the active site should be neutral. The planarity of the aspartate dyad may be due to the formation of two hydrogen bonds: one between the inner Oδ1oxygen atoms of the two catalytic aspartates and another between the Oδ2atom of Asp-125 and the nitrogen atom of the reduced peptide bond of the bound inhibitor. This would require two additional protonations, either of both aspartates, or of one Asp and the amido nitrogen atom of Nle-204. Our results favor the Asp-inhibitor protonation but the other one is not excluded. Implications of these findings for the mechanism of enzymatic catalysis are discussed. Dynamic properties of the hydrogen bond network in the active site and an analysis of the interaction energy between the inhibitor and the protease are presented. © 1997 Wiley-Liss, Inc.  相似文献   

14.
  1. Download : Download high-res image (202KB)
  2. Download : Download full-size image
  相似文献   

15.
蛋白酶抑制剂对绿豆象幼虫中肠蛋白酶活性的影响   总被引:1,自引:0,他引:1  
为明确蛋白酶抑制剂对绿豆象幼虫中肠蛋白酶活性的影响,采用室内人工接虫和生化测定的方法,研究了在离体条件和饲喂条件下4种蛋白酶抑制剂对绿豆象幼虫中肠蛋白酶的抑制作用,并测定了绿豆象幼虫取食不同含量的绿豆胰蛋白酶抑制剂(MBTI)的人工绿豆后,其中肠内总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性的变化.结果表明:在离体条件下,供试4种蛋白酶抑制剂对绿豆象幼虫总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性均有明显的抑制作用,且浓度越大,抑制效果越显著,其中以20μg·mL-1的MBTI对3种酶活性的抑制效果最强,3种酶活性分别比对照降低了62.5%、41.2%和38.7%,而卵粘蛋白抑制剂(OI)抑制效果最弱.绿豆象幼虫取食含不同抑制剂的人工绿豆后,中肠内3种酶活性也均受到一定的抑制作用,取食后随龄期的延长,3种酶活性有所升高但仍显著低于对照,且以MBTI的抑制作用最强.当绿豆象幼虫取食不同含量MBTI的人工绿豆后,随MBTI含量的增加,对总蛋白酶活性和类胰蛋白酶活性的抑制作用均逐渐增强,但对类胰凝乳蛋白酶活性的抑制作用并不显著,只有当MBTI含量达20%时,对类胰凝乳蛋白酶活性才表现出明显的抑制作用.  相似文献   

16.
Cathepsin D (Cath D) is overexpressed and secreted in a number of solid tumors and involved in the progress of tumor invasion, proliferation, metastasis, and apoptosis. Inhibition of Cath D is regarded as an attractive pathway for the development of novel anticancer drugs. Our previous studies revealed that tasiamide B, a cyanobacterial peptide that contained a statine‐like unit, exhibited good inhibition against Cath D and other aspartic proteases. Using this natural product as prototype, we designed and synthesized three new analogs, which bear isophthalic acid fragment at the N‐terminus and isobutyl amine ( 1 ), cyclopropyl amine ( 2 ), or 3‐methoxybenzyl amine ( 3 ) moiety at the C‐terminus. Enzymatic assays revealed that all these three compounds showed moderate‐to‐good inhibition against Cath D, with IC50s of 15, 884, and 353 nM, respectively. Notably, compound 1 showed extreme selectivity for Cath D with 576‐fold over Cath E and 554‐fold over BACE1, which could be a valuable template for the design of highly potent and selective Cath D inhibitors. Additionally, compound 1 showed moderated activity against HeLa cell lines with IC50 of 41.8 μM. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2′ to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-Å resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 Å on main-chain atoms. Most hydrogen-bond and weaker C-H…O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.  相似文献   

18.
Synergistes sp. DQ560074 produced a protease in submerged fermentation (SmF) at 400–420 U/mL and in solid‐state fermentation (SSF) at 745–755 U/g. The protease, which belongs to the aspartic protease class, was active over a wide range of pH (5–7) and at high temperatures (25–45°C). The protease is stable and active in various polar protic solvents (50% v/v) like ethanol, isopropanol, n–butanol, in polar aprotic solvents (50% v/v) like acetonitrile, and in non‐polar solvents (50% v/v) such as ethylacetate and toluene, but not in hydrophilic organic solvents (methyl alcohol and acetone). As far as we know, this is the first contribution to the production of a mesophilic protease with solvent stability in SSF using a proteinaceous solid waste.  相似文献   

19.
新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)席卷全球,具有较高的传染性和死亡率,但目前尚缺乏安全有效的COVID-19疫苗与治疗药物.新型冠状病毒主蛋白酶(main protease,Mpro)的进化高度保守,在调控新冠病毒RNA复制中具有重要的生物学功能,已成为新型广谱抗冠状...  相似文献   

20.
Previously, we described the discovery of potent ferulic acid-based histone deacetylase inhibitors (HDACIs) with halogeno-acetanilide as novel surface recognition moiety (SRM). In order to improve the affinity and activity of these HDACIs, twenty seven isoferulic acid derivatives were described herein. The majority of title compounds displayed potent HDAC inhibitory activity. In particular, IF5 and IF6 exhibited significant enzymatic inhibitory activities, with IC50 values of 0.73 ± 0.08 and 0.57 ± 0.16 μM, respectively. Furthermore, these compounds showed moderate antiproliferative activity against human cancer cells. Especially, IF6 displayed promising profile as an antitumor candidate with IC50 value of 3.91 ± 0.97 μM against HeLa cells. The results indicated that these isoferulic acid derivatives could serve as promising lead compounds for further optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号