首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Greater Yellowstone Ecosystem in the northern Rocky Mountains provides the context for a natural experiment to investigate the response of consumers to resources with differing spatial and temporal dispersion regimes. Grey wolves (Canis lupus) and human hunters both provide resource subsidies to scavengers by provisioning them with the remains of their kills. Carrion from hunter kills is highly aggregated in time and space whereas carrion from wolf kills is more dispersed in both time and space. We estimated the total amount of carrion consumed by each scavenger species at both wolf and hunter kills over 4 years. Species with large feeding radii [bald eagles (Haliaeetus leucocephalus) and ravens (Corvus corax)], defined as the area over which a consumer can efficiently locate and integrate resources, dominated consumption at the highly aggregated hunter kills whereas competitively dominant species [coyotes (Canis latrans)] dominated at the more dispersed wolf kills. In addition, species diversity and the evenness of carrion consumption between scavengers was greater at wolf kills than at hunter kills while the total number of scavengers at hunter kills exceeded those at wolf kills. From a community perspective, the top–down effect of predation is likely to be stronger in the vicinity of highly aggregated resource pulses as species with large feeding radii switch to feeding on alternative prey once the resource pulse subsides.  相似文献   

2.
Scavenging is an important ecological process. By quickly locating and consuming carrion, vertebrate scavengers cycle nutrients, stabilize food webs, and may help mitigate disease transmission to humans. Across Africa, many scavengers feed at abattoirs (i.e. slaughterhouses), thereby aiding in waste removal. Little information exists on the scavenger community composition and dynamics at abattoirs, and, to our knowledge, the carrion removal that scavengers provide at these sites has never been quantified. We studied vertebrate scavenger ecology at 6 abattoirs in Ethiopia with time-lapse photography and in-person surveys from 2014–2019. Specifically, we investigated daily, seasonal, and inter-annual patterns in use of abattoirs by vertebrate scavengers and estimated carrion consumption rates. We demonstrated the importance of abattoirs for supporting a large number and diversity of scavenger species, including 3 critically endangered, 2 endangered, 1 vulnerable, and 2 regionally endemic bird species. At the start of the study, vultures contributed 57% of carrion removal provided by vertebrate scavengers. Detections of critically endangered Rüppell's (Gyps rueppelli) and white-backed (G. africanus) vultures declined by 73% and critically endangered hooded vultures (Necrosyrtes monachus) declined by 15% over the study period. Simultaneously, the detections of dogs more than doubled. Using estimates of species-specific carrion consumption rates from the literature, coupled with changes in scavenger detections in our study, we estimated a 12% (54 kg/day) reduction in carrion consumption, or nearly 20,000 kg carrion less consumed per year by the end of the study at these 6 abattoirs. Our results indicate that ongoing vulture declines across Africa could significantly reduce carrion removal. We recommend that improving fencing around abattoir facilities could help restrict access by feral dogs, increase foraging by vultures, and, therefore, increase overall carrion removal rates.  相似文献   

3.
Climate change poses an immediate threat to the persistence and distribution of many species, yet our ability to forecast changes in species composition is hindered by poor understanding of the extent to which higher trophic‐level interactions may buffer or exacerbate the adverse effects of warming. We incorporated species‐specific consumption data from 240 wolf‐killed elk carcasses from Yellowstone National Park into stochastic simulation models to link trends in the El Niño Southern Oscillation (ENSO) to food procurement by a guild of scavengers as a function of gray wolf reintroduction. We find that a shift in ENSO towards the El Niño (warming) phase of the cycle coincident with increasing global temperatures reduces carrion for scavengers, particularly those with strong seasonal patterns in resource use such as grizzly bears. Wolves alleviate these warming‐induced food shortages by rendering control over this crucial resource to biotic rather than abiotic factors. Ecosystems with intact top predators are likely to exhibit stronger biotic regulation and should be more resistant to climate change than ecosystems lacking them.  相似文献   

4.
Scavenging is a widespread behaviour and an important process influencing food webs and ecological communities. Large carnivores facilitate the movement of energy across trophic levels through the scavenging and decomposition of their killed prey, but competition with large carnivores is also likely to constrain acquisition of carrion by scavengers. We used an experimental approach based on motion-triggered video cameras at black-tailed deer (Odocoileus hemionus columbianus) carcasses to measure the comparative influences of two large carnivores in the facilitation and limitation of carrion acquisition by scavengers. We found that pumas (Puma concolor) and black bears (Ursus americanus) had different effects on their ecological communities. Pumas, as a top-level predator, facilitated the consumption of carrion by scavengers, despite significantly reducing their observed sum feeding times (165.7 min±21.2 SE at puma kills 264.3 min±30.1 SE at control carcasses). In contrast, black bears, as the dominant scavenger in the system, limited consumption of carrion by scavengers as evidenced by the observed reduction of scavenger species richness recorded at carcasses where they were present (mean = 2.33±0.28 SE), compared to where they were absent (mean = 3.28±0.23 SE). Black bears also had large negative effects on scavenger sum feeding times (88.5 min±19.8 SE at carcasses where bears were present, 372.3 min±50.0 SE at carcasses where bears were absent). In addition, we found that pumas and black bears both increased the nestedness (a higher level of order among species present) of the scavenger community. Our results suggest that scavengers have species-specific adaptions to exploit carrion despite large carnivores, and that large carnivores influence the structure and composition of scavenger communities. The interactions between large carnivores and scavengers should be considered in future studies of food webs and ecological communities.  相似文献   

5.
Many apex scavenger species, including nearly all obligate scavengers, are in a state of rapid decline and there is growing evidence these declines can drastically alter ecological food webs. Our understanding of how apex scavengers regulate populations of mesoscavengers, those less‐efficient scavengers occupying mid‐trophic levels, is improving; yet, there has been no comprehensive evaluation of the evidence around the competitive release of these species by the loss of apex scavengers. Here we present current evidence that supports the mesoscavenger release hypothesis, the increase in mesoscavengers and increase in carrion in the face of declining apex scavengers. We provide two models of scavenger dynamics to demonstrate that the mesoscavenger release hypothesis is consistent with ecological theory. We further examine the ecological and human well‐being implications of apex scavenger decline, including carrion removal and disease regulation services.  相似文献   

6.
Among extant vertebrates, only the 23 species of vulture are obligate scavengers. We use an energetic modelling approach to explore the constraints imposed by an obligate scavenging lifestyle, and to ask whether obligate scavengers must always be avian and generally large-bodied users of soaring flight. Our model found that aerial scavengers always out-competed postulated terrestrial ones, mainly because flight allows area to be searched much more rapidly for carrion. Soaring was favoured over flapping flight because the reduction in flight speed (and so rate of area search) was more than compensated for by the decrease in the costs of transport. Large individual size is selected for if carrion is available in large packages, when obligate scavenger feed only infrequently, and so must be able to survive on body reserves in the periods between discovering food falls. In the absence of avian radiation, an obligate terrestrial scavenger seems energetically feasible, but we argue that such a beast is unlikely to have evolved. In birds, in order to become exclusive scavengers, vultures have needed to specialize for efficient soaring flight as a low energy form of travel, and as a consequence they have lost the agility needed to kill prey. In mammals, however, no comparable trade-off occurs. So for terrestrial carnivores there is probably no strong selection pressure towards being an exclusive scavenger. Indeed it will perhaps always be more advantageous to retain the flexibility of obtaining food by either predation or scavenging.  相似文献   

7.

Aim

Despite the increasing scientific evidence on the importance of carrion in the ecology and evolution of many vertebrates, scavenging is still barely considered in diet studies. Here, we draw attention to how scientific literature has underestimated the role of vertebrates as scavengers, identifying the ecological traits that characterize those species whose role as scavengers could have gone especially unnoticed.

Location

Global.

Time Period

1938–2022.

Major Taxa Studied

Terrestrial vertebrate scavengers.

Methods

We analysed and compared (a) the largest database available on scavenging patterns by carrion-consuming vertebrates, (b) 908 diet studies about 156 scavenger species and (c) one of the most complete databases on bird and mammal diets (Elton Traits database). For each of these 156 species, we calculated their scavenging degree (i.e. proportion of carcases where the species is detected consuming carrion) as a proxy for carrion consumption, and related their ecological traits with the probability of being identified as scavengers in diet studies and in the Elton Traits database.

Results

More than half of the species identified as scavengers at monitored carcasses were not assigned carrion as food source in their diet studies nor in the Elton Traits database. Using a subset of study sites, we found a direct relationship between a species' scavenging degree and its rate of carrion biomass removal. In addition, scavenger species, which were classified as non-predators and mammals had a lower probability of being identified as scavengers in diet studies and in the Elton Traits database, respectively.

Main Conclusions

Our results clearly indicate an underestimation of the role of scavenging in vertebrate food webs. Given that detritus recycling is fundamental to ecosystem functioning, we encourage further recognition and investigation of the role of carrion as a food resource for vertebrates, especially for non-predator species and mammals with higher scavenging degree.  相似文献   

8.
Invasive Alien Species (IAS) alter ecosystems, disrupting ecological processes and driving the loss of ecosystem services. The common carp Cyprinus carpio is a hazardous and widespread IAS, becoming the most abundant species in many aquatic ecosystems. This species transforms ecosystems by accumulating biomass to the detriment of other species, thus altering food webs. However, some terrestrial species, such as vertebrate scavengers, may benefit from dead carps, by incorporating part of the carp biomass into the terrestrial environment. This study describes the terrestrial vertebrate scavenger assemblage that benefits from carp carcasses in a Mediterranean wetland. We also evaluate the seasonal differences in the scavenger assemblage composition and carrion consumption patterns. Eighty carp carcasses (20 per season) were placed in El Hondo Natural Park, a seminatural mesohaline wetland in south‐eastern Spain, and we monitored their consumption using camera traps. We recorded 14 scavenger species (10 birds and four mammals) consuming carp carcasses, including globally threatened species. Vertebrates consumed 73% of the carrion biomass and appeared consuming at 82% of the carcasses. Of these carcasses consumed, 75% were completely consumed and the mean consumption time of carcasses completely consumed by vertebrates was 44.4 h (SD = 42.1 h). We recorded differences in species richness, abundance, and assemblage composition among seasons, but we did not find seasonal differences in consumption patterns throughout the year. Our study recorded a rich and efficient terrestrial vertebrate scavenger assemblage benefitting from carp carcasses. We detected a seasonal replacement on the scavenger species, but a maintenance of the ecological function of carrion removal, as the most efficient carrion consumers were present throughout the year. The results highlight the importance of vertebrate scavengers in wetlands, removing possible infectious focus, and moving nutrients between aquatic and terrestrial environments.  相似文献   

9.
Scavenging can have important consequences for food web dynamics, for example, it may support additional consumer species and affect predation on live prey. Still, few food web models include scavenging. We develop a dynamic model that includes two facultative scavenger species, which we refer to as the predator or scavenger species according to their natural scavenging propensity, as well as live prey, and a carrion pool to show ramifications of scavenging for predation in simple food webs. Our modeling suggests that the presence of scavengers can both increase and decrease predator kill rates and overall predation in model food webs and the impact varies (in magnitude and direction) with context. In particular, we explore the impact of the amount of dynamics (exploitative competition) allowed in the predator, scavenger, and prey populations as well as the direction and magnitude of interference competition between predators and scavengers. One fundamental prediction is that scavengers most likely increase predator kill rates, especially if there are exploitative feedback effects on the prey or carrion resources like is normally observed in natural systems. Scavengers only have minimal effects on predator kill rate when predator, scavenger, and prey abundances are kept constant by management. In such controlled systems, interference competition can greatly affect the interactions in contrast to more natural systems, with an increase in interference competition leading to a decrease in predator kill rate. Our study adds to studies that show that the presence of predators affects scavenger behavior, vital rates, and food web structure, by showing that scavengers impact predator kill rates through multiple mechanisms, and therefore indicating that scavenging and predation patterns are tightly intertwined. We provide a road map to the different theoretical outcomes and their support from different empirical studies on vertebrate guilds to provide guidance in wildlife management.  相似文献   

10.
Abstract: In western Canada it is illegal to trap or snare cougars (Puma concolor), but cougars are sometimes caught accidentally in snares placed near carrion baits, a technique commonly used by trappers to harvest wolves (Canis lupus). We studied cougar foraging ecology and survival in west-central Alberta to estimate the propensity for cougars to scavenge, their susceptibility to snaring at trapper bait stations, and the implications these have for managing cougar populations. During 2005–2008, we used data from visits to 3,407 Global Positioning System (GPS) location clusters and >400 km of snow tracking of 44 cougars to locate foraging events and calculate scavenging rates. We identified 83 instances of scavenging, and 64% of monitored cougars scavenged at least once. Scavenging rates were higher in winter (0.12 events/week) than in summer (0.04 events/week), reflecting seasonal variation in carrion availability. Individual cougars scavenged at different rates, and winter feeding on carrion occupied up to 50% of total carcass handling time for some cougars. Based on these results we conclude that cougars are facultative scavengers. A propensity to scavenge made cougars susceptible to snaring causing high annual mortality in radiocollared cougars (0.11, 95% CI = 0.03–0.21). Provincial cougar mortality data demonstrate that snaring has increased dramatically as a mortality source in Alberta over the last 2 decades. Mortalities of radiocollared cougars during our study were 100% human caused and the addition of snaring mortality to already high hunting mortality resulted in low annual survival (0.67, 95% CI = 0.53–0.81). Our study is one of the first to identify population-level consequences for nontarget animals killed unintentionally by indiscriminate harvest techniques in a terrestrial ecosystem. Maintaining sustainable cougar harvest where snaring at carrion baits is permitted may require flexible hunting quotas capable of accommodating high cougar snaring mortalities in some years.  相似文献   

11.
Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km(2) to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions.  相似文献   

12.
One foraging strategy that scavengers can employ to discover unpredictable food sources is to associate directly with predators who inadvertently provide food. The common raven, a well known feeding generalist, is also a prominent scavenger of wolves' kills and is found to be in close association with this predator. We tested the hypothesis that ravens preferentially associate with wolves in winter as a kleptoparasitic foraging strategy. The presence, absence and behaviour of ravens was documented during winter observations of wolves, coyotes, Canis latrans, and elk, Cervus elaphus, as well as the landscape in the absence of these three species. Ravens were found to be in close association with wolves when they were travelling, resting and hunting prey. In comparison, ravens showed no significant association with coyotes, elk or areas on the landscape in the absence of wolves. We also compared ravens' discovery success of wolf-killed and nonwolf-killed carcasses and their behavioural response upon discovery. Ravens found all wolf kills almost immediately and remained at the carcass to feed alongside wolves after the death of the prey. In contrast, ravens were less successful discovering experimentally placed carcasses in the same study region, and did not land or feed despite the availability of fresh, exposed meat. Our results show that ravens' association with wolves is not just an incidental and proximate by-product of the presence of fresh meat. Instead, we show that ravens preferentially associate with wolves in both the presence and absence of food, resulting in the discovery of carcasses and suppression of ravens' innate fear of novel food sources. Through this mode of social foraging, ravens may experience increased foraging efficiency in the use of an otherwise spatially and temporally unpredictable food source.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .  相似文献   

13.
Understanding demographic processes will be essential to construct robust models of population responses to climate change. We show that survival is related to the strength of the North Atlantic Oscillation in five out of ten British resident passerine species, and explore the importance of biologically more specific variables (duration of winter frosts and snow periods; occurrence of cold, wet days; spring temperature; and summer drought). The most important variables differed between species in relation to differences in foraging strategy. In almost all cases, first-year survival was influenced by weather more than was the survival of adult birds. Particularly vulnerable species, such as the Wren Troglodytes troglodytes , may exhibit a 25% reduction in juvenile survival rates due to adverse weather within the range experienced in the last 30 years; variation in survival by 10% or more is commonplace in most species. Thus, climate influences on food availability may provide the mechanism by which populations will alter under changed climatic conditions, though the presence of density dependence may reduce the impact of this on long-term population trajectories.  相似文献   

14.
Spatial and/or temporal segregation of resource use are mechanisms that may allow coexistence between potential competitors. Spatial and temporal patterns of carrion use were studied in the main avian scavengers of Sierra Espuña Natural Park (SE, Spain). We monitored the use of ungulate carcasses provided by hunting during winter and summer of 2005–2006. Non-breeding ravens exploited aggregated carcasses and depleted the resource in a few days while golden eagles used scattered carcasses over a longer consumption period. Moreover, non-breeding ravens exploited carcasses when golden eagles were less active. Almost all available hunter kills were exploited by golden eagles and/or ravens during winter whereas a high number of carcasses were not used during the breeding season, suggesting strong competition in a period of low food availability. Thus carrion arrangement, seasonal behaviour and competitive interactions could be affecting the foraging patterns of these two species. Interestingly, intraspecific aggregation of the smaller species and dominance of the larger one may act on the use of shared resources and trigger segregation mechanisms. Our results support that differences in the spatial and temporal patterns of resource use may allow resource partitioning between two species, thus facilitating their coexistence in sympatric areas.  相似文献   

15.
In many temperate ecosystems animal carcasses resultant from wildlife harvest can provide a high-quality food source for myriad facultative scavengers. We investigated scavenger use of human-provisioned ungulate carrion from a fall moose (Alces alces) hunt during 2010 and 2011 on the Gustavus Forelands, Alaska, USA. Using data from remote cameras, we (1) identified the scavenger species that used these resources and (2) evaluated their spatial and temporal responses to this seasonal resource event by indexing their activity patterns and relative order of arrival at carrion sites. We also quantified the length of time carrion persisted and estimated the amount of moose biomass provisioned to vertebrate scavengers by human hunters. Our results indicated that 11 vertebrate species (five birds and six mammals) scavenged moose carrion. We found that the common raven was the only species documented at all carrion sites and the most abundant species at moose carrion sites. As a species group, corvids [black-billed magpie (Pica hudsonia), common raven (Corvus corax); 0.1 ± 2.3 days] were the first to arrive at human-provisioned moose carrion sites, whereas ursids [brown bear (Ursus arctos), black bear (U. americanus); 1.3 ± 1.0 days] arrived after corvids but sooner than expected and canids [gray wolf (Canis lupus), coyote (C. latrans); 3.9 ± 3.0] arrived later than expected compared to our null model. On average, carrion persisted >20 days and hunters provided scavengers with a minimum of 2720 kg (82.7 kg/km2) and 1815 kg (64.8 kg/km2) of moose carrion during 2010 and 2011, respectively. Understanding how scavengers, particularly large carnivores, interact with human-provisioned moose carrion at the rural–wildland interface is essential for mitigating potential human–wildlife conflicts associated with humans subsidizing predators with a high-quality food resource.  相似文献   

16.
The particle size of the food resource strongly determines the structure and dynamics of food webs. However, the ecological implications of carcass size variation for scavenging networks structure and functioning have been largely overlooked. Here we investigate differences in scavenging patterns due to carcass size in a complex vertebrate scavenger community, Hluhluwe‐iMfolozi Park, South Africa, while taking into account seasonality. We monitored the consumption of three types of experimental carcasses: ‘small’ (< 10 kg), ‘medium’ (10–100 kg) and ‘large’ (> 100 kg). We employed general lineal models to explore the influence of carcass size on 1) scavenging network structure (scavenger species richness per carcass) and 2) functioning (carcass detection time, consumption time, consumption rate and percentage of carrion consumed). We also tested whether the structure of the scavenging network of each carcass size was nested, i.e. whether the scavenging assemblage in species‐poor carcasses was a subset of the assemblage consuming species‐rich carcasses. We found strong evidence indicating that carcass size is a major factor governing the associated scavenger assemblage. Scavenger species richness per carcass and carcass consumption time and rate increased with carcass size, while carcass detection time and percentage of carrion biomass consumed were negatively related to carcass size. Strikingly, most of the carrion biomass was consumed by facultative scavengers, represented by large mammalian carnivores, rather than by obligate scavengers (i.e. vultures). Scavenging network nestedness tended to be higher at larger carcasses, and nestedness was sensitive to the removal of the most connected species in the network (spotted hyena) rather than vultures. When comparing scavenging and predation assemblages, crucial size‐dependent differences emerge. Also, we identified a traditionally ignored mechanism by which hunting large prey could be relatively less profitable for predators, namely the costs associated with competition from scavengers and decomposers.  相似文献   

17.
Changing climate can modify predator–prey interactions and induce declines or local extinctions of species due to reductions in food availability. Species hoarding perishable food for overwinter survival, like predators, are predicted to be particularly susceptible to increasing temperatures. We analysed the influence of autumn and winter weather, and abundance of main prey (voles), on the food‐hoarding behaviour of a generalist predator, the Eurasian pygmy owl (Glaucidium passerinum), across 16 years in Finland. Fewer freeze–thaw events in early autumn delayed the initiation of food hoarding. Pygmy owls consumed more hoarded food with more frequent freeze–thaw events and deeper snow cover in autumn and in winter, and lower precipitation in winter. In autumn, the rotting of food hoards increased with precipitation. Hoards already present in early autumn were much more likely to rot than the ones initiated in late autumn. Rotten food hoards were used more in years of low food abundance than in years of high food abundance. Having rotten food hoards in autumn resulted in a lower future recapture probability of female owls. These results indicate that pygmy owls might be partly able to adapt to climate change by delaying food hoarding, but changes in the snow cover, precipitation and frequency of freeze–thaw events might impair their foraging and ultimately decrease local overwinter survival. Long‐term trends and future predictions, therefore, suggest that impacts of climate change on wintering food‐hoarding species could be substantial, because their ‘freezers’ may no longer work properly. Altered usability and poorer quality of hoarded food may further modify the foraging needs of food‐hoarding predators and thus their overall predation pressure on prey species. This raises concerns about the impacts of climate change on boreal food webs, in which ecological interactions have evolved under cold winter conditions.  相似文献   

18.
Apex predators play an important role in shaping ecosystem structure. They may suppress smaller predators (mesopredators) but also subsidize scavengers via carrion provisioning. However, the importance of these interactions can change with ecosystem context. The wolverine (Gulo gulo) is a cold-adapted carnivore and facultative scavenger. It has a circumboreal distribution, where it could be either suppressed or subsidized by larger predators. In Scandinavia, the wolverine might interact with two larger predators, wolf (Canis lupus) and lynx (Lynx lynx), but human persecution decimated the populations in the nineteenth and early twentieth century. We investigated potential relationships between wolverine and the larger predators using hunting bag statistics from 15 Norwegian and Swedish counties in 1846–1922. Our best models showed a positive association between wolverine and lynx trends, taking ecological and human factors into account. There was also a positive association between year-to-year fluctuations in wolverine and wolf in the latter part of the study period. We suggest these associations could result from positive lynx–wolverine interactions through carrion provisioning, while wolves might both suppress wolverine and provide carrion with the net effect becoming positive when wolf density drops below a threshold. Wolverines could thus benefit from lynx presence and low-to-intermediate wolf densities.  相似文献   

19.
Hunters support scavengers with seasonal pulses of carrion. If those hunters also deploy remote cameras at kill sites, they could simultaneously contribute data to wildlife research while gaining first-hand knowledge of scavenger ecology. In 2018–2020, we recruited hunters to monitor carcasses and offal with remote cameras across western Montana, USA. We increased our sampling effort by also setting up cameras following successful elk (Cervus canadensis) hunts at a private ranch. Cameras recorded 19 scavenger species. Golden eagles (Aquila chrysaetos) appeared at 55% of sites, and 3 individuals wore auxiliary markers, demonstrating how hunters can augment efforts to detect tagged wildlife. Cameras also documented elusive predators (e.g., wolves [Canis lupus]) and a seasonality of scavenging among American black bears (Ursus americanus). At 42% of the sites, ≥1 cervid investigated the carrion within 1 m, a behavior that may transmit the prions associated with chronic wasting disease. Hunters are willing and competent citizen scientists that can help generate wildlife observations at a broad spatial scale.  相似文献   

20.
Linking moose habitat selection to limiting factors   总被引:7,自引:0,他引:7  
It has been suggested that patterns of habitat selection of animals across spatial scales should reflect the factors limiting individual fitness in a hierarchical fashion. Animals should thus select habitats that permit avoidance of the most important limiting factor at large spatial scales while the influence of less important factors should only be evident at fine scales. We tested this hypothesis by investigating moose Alces alces habitat selection using GPS telemetry in an area where the main factors limiting moose numbers were likely (in order of decreasing importance) predation risk, food availability and snow. At the landscape scale, we predicted that moose would prefer areas where the likelihood of encountering wolves was low or areas where habitats providing protection from predation were dominant. At the home‐range scale, we predicted that moose selection would be driven by food availability and snow depth. Wolf territories were delineated using telemetry locations and the study area was divided into 3 sectors that differed in terms of annual snowfall. Vegetation surveys yielded 6 habitat categories that differed with respect to food availability, and shelter from predation or snow. Our results broadly supported the hypothesis because moose reacted to several factors at each scale. At the landscape scale, moose were spatially segregated from wolves by avoiding areas receiving the lowest snowfall, but they also preferentially established their home range in areas where shelter from snow bordered habitat types providing abundant food. At the home‐range scale, moose also traded off food availability with avoidance of deep snow and predation risk. During winter, moose increased use of stands providing shelter from snow along edges with stands providing abundant food. Habitat selection patterns of females with calves differed from that of solitary moose, the former being associated primarily with habitats providing protection from predation. Animals should attempt to minimize detrimental effects of the main limiting factors when possible at the large scale. However, when the risk associated with several potential limiting factors varies with scale, we should expect animals to make trade‐offs among these.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号