首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of enterotoxigenic Escherichia coli (ETEC) are responsible for significant rates of morbidity and mortality among children, particularly in developing countries. The majority of clinical and public health laboratories are capable of isolating and identifying Salmonella, Shigella, Campylobacter, and Escherichia coli O157:H7 from stool samples, but ETEC cannot be identified by routine methods. The method most often used to identify ETEC is polymerase chain reaction for heat-stable and heat-labile enterotoxin genes, and subsequent serotyping, but most clinical and public health laboratories do not have the capacity or resources to perform these tests. In this study, polyclonal rabbit and monoclonal mouse IgG2b antibodies against ETEC heat-labile toxin-I (LT) were characterized and the potential applicability of a capture assay was analyzed. IgG-enriched fractions from rabbit polyclonal and the IgG2b monoclonal antibodies recognized LT in a conformational shape and they were excellent tools for detection of LT-producing strains. These findings indicate that the capture immunoassay could be used as a diagnostic assay of ETEC LT-producing strains in routine diagnosis and in epidemiological studies of diarrhea in developing countries as enzyme linked immunosorbent assay techniques remain as effective and economical choice for the detection of specific pathogen antigens in cultures.  相似文献   

2.
Enterotoxigenic strains of Escherichia coli (ETEC) may produce a heat-labile enterotoxin (LT), a heat-stable enterotoxin (ST) or both enterotoxins. Certain serogroups are represented more frequently than others in ETEC isolated from humans. The transfer of three plasmids encoding enterotoxin production (Ent) to 22 non-toxigenic E. coli strains of many different O:H serotypes was studied. The Ent plasmids encoded ST (TP276), or LT (TP277), or ST + LT (TP214), and all carried antibiotic-resistance determinants. Twenty-one recipient strains acquired TP214, 18 acquired TP277 and 14 acquired TP276. Strains of those serotypes to which ETEC in diarrhoeal studies commonly belong neither acquired nor maintained Ent plasmids with a higher frequency than strains of those serotypes to which ETEC rarely belong. The recipient strains, with one exception, all expressed ST, or LT, or ST and LT, when they had acquired the appropriate plasmid; a non-motile strain belonging to O serogroup 88 expressed LT but failed to express ST when it acquired TP214 or TP277.  相似文献   

3.
This study was performed from June 2002 to November 2003 year in Malatya, eastern Turkey. Stools of 172 diarrheic patients and 90 healthy controls were analysed for enterotoxigenic Escherichia coli (ETEC). Heat-labile (LT) and heat-stable (ST) toxins were investigated by passive latex agglutination and enzyme immunoassay, respectively. Nine ETEC strains were isolated from 172 diarrheic stools (5.2%). Seven of the ETEC strains (10.1%) were isolated from 69 children in the 0-5 year age group. Two of these pediatric isolates were ST positive (2.9%) and five were LT positive (7.2%). ETEC was not isolated in the 6-18 year age group. Two ST producing E. coli strains were detected in diarrheic adult patients (> 18 years). In the 90 controls, two ETEC strains were detected (2.2%). One of them was a LT producer (1.1%) and the other was a ST producer (1.1%). E. coli strains producing both toxins simultaneously were not observed. ETEC positivity was higher in the diarrheic group than in the control group but statistically not significant (p > 0.05). The rate of resistance among ETEC strains to cefuroxime axetil, ampicillin, piperacillin, and trimethoprim-sulfamethoxazole was 72.7%, 54.5%, 45.5%, and 36.4%, respectively whereas the resistance rate to the same antibiotics in non-ETEC strains was 14%, 62%, 54%, and 66%, respectively. All ETEC isolates were intermediately resistant to cephalothin and fully susceptible to other antibiotics tested. Typing of the ETEC strains was done by arbitrary primed polymerase chain reaction (AP-PCR). Only two LT strains of the 11 typed strains had a unique profile. The remaining nine were mixed LT and ST strains and divided into two groups. The first group had three strains having a similarity coefficient ranging from 70-90%. The other one had six strains, five of them were similar and one was subtype isolate. It can be concluded that ETEC strains might be considerably important enteropathogens especially in pediatric patients in the 0-5 year age group. High clonal relation indicated that ETEC strains were epidemiologically related.  相似文献   

4.
As the result of the comparative examination of adult patients with acute enteric diseases and normal adults, 173 E. coli enterotoxigenic strains were isolated (161 strains from the patients and 12 strains from normal persons). 83% of the isolated enterotoxigenic E. coli (ETEC) produced two enterotoxins: thermolabile (LT) and thermostable (ST). Enterotoxigenicity was most pronounced in the strains of ETEC belonging to the prevaling variant ST + LT +. The enterotoxigenic properties of ETEC were highly stable: the production of ST and LT in the strains remained unchanged after their storage for up to 4 years. The isolated ETEC comprised 48 serogroups and 61 strains. The strains belonging to the same seroval had a similar degree of toxigenicity. The strains belonging to different serovars considerably differed in the activity of their enterotoxins. The production of two kinds of enterotoxins in the isolated E. coli strains was inter-related: the strains with a high activity of ST were, as a rule, good producers of LT.  相似文献   

5.
The natural diversity of the elt operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT(+) (25 strains) only or LT(+)/ST(+) (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the elt operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.  相似文献   

6.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent cause of traveler's diarrhea and infant mortality in third-world countries. Heat-labile enterotoxin (LT) is secreted from ETEC via vesicles composed of outer membrane and periplasm. We investigated the role of ETEC vesicles in pathogenesis by analyzing vesicle association and entry into eukaryotic cells. Fluorescently labeled vesicles from LT-producing and LT-nonproducing strains were compared in their ability to bind adrenal and intestinal epithelial cells. ETEC-derived vesicles, but not control nonpathogen-derived vesicles, associated with cells in a time-, temperature-, and receptor-dependent manner. Vesicles were visualized on the cell surface at 4 degrees C and detected intracellularly at 37 degrees C. ETEC vesicle endocytosis depended on cholesterol-rich lipid rafts. Entering vesicles partially colocalized with caveolin, and the internalized vesicles accumulated in a nonacidified compartment. We conclude that ETEC vesicles serve as specifically targeted transport vehicles that mediate entry of active enterotoxin and other bacterial envelope components into host cells. These data demonstrate a role in virulence for ETEC vesicles.  相似文献   

7.
Enterotoxigenic Escherichia coli (ETEC) colonize the intestine and adhere to the epithelium by means of different host specific colonization factors (CFs). Colonizing ETEC produce one or both of two enterotoxins; the heat stable (ST) and heat labile (LT) toxins which are both able to cause diarrhoea. The regulation of virulence genes in ETEC during infection of the human intestine is mainly unknown. In this study we analysed the level of mRNA expression of estA, coding for ST, and eltB, coding for the B subunit of LT, during human infection. The expressions of the toxins in ETEC strains expressing both ST and LT were investigated in bacteria isolated directly from patient stool without sub-culturing, (in vivo) and compared to the expression pattern of the corresponding ST/LT strains grown in liquid broth (in vitro) by quantitative competitive RT-PCR using fluorescent primers. We found that estA and eltB are expressed in the in vivo samples but no significant up-or down regulation of the expression levels of either estA or eltB could be determined in vivo as compared to in vitro.  相似文献   

8.
Production and release of heat-labile toxin (LT) by wild-type enterotoxigenic Escherichia coli (ETEC) strains, isolated from diarrheic and asymptomatic Brazilian children, was studied under in vitro and in vivo conditions. Based on a set of 26 genetically diverse LT(+) enterotoxigenic E. coli strains, cell-bound LT concentrations varied from 49.8 to 2415 ng mL(-1). The amounts of toxin released in culture supernatants ranged from 0% to 50% of the total synthesized toxin. The amount of LT associated with secreted membrane vesicles represented <5% of the total toxin detected in culture supernatants. ETEC strains secreting higher amounts of LT, but not those producing high intracellular levels of cell-bound toxin, elicited enhanced fluid accumulation in tied rabbit ileal loops, suggesting that the strain-specific differences in production and secretion of LT correlates with symptoms induced in vivo. However, no clear correlation was established between the ability to produce and secrete LT and the clinical symptoms of the infected individuals. The present results indicate that production and release of LT by wild-type human-derived ETEC strains are heterogeneous traits under both in vitro and in vivo growth conditions and may impact the clinical outcomes of infected individuals.  相似文献   

9.
Enterotoxigenic Escherichia coli (ETEC) strains that produce heat-stable (ST) and/or heat-labile (LT) enterotoxins are cause of post-weaning diarrhea in piglets. However, the relative importance of the different enterotoxins in host immune responses against ETEC infection has been poorly defined. In the present study, several isogenic mutant strains of an O149:F4ac(+), LT(+) STa(+) STb(+) ETEC strain were constructed that lack the expression of LT in combination with one or both types of ST enterotoxins (STa and/or STb). The small intestinal segment perfusion (SISP) technique and microarray analysis were used to study host early immune responses induced by these mutant strains 4 h after infection in comparison to the wild type strain and a PBS control. Simultaneously, net fluid absorption of pig small intestinal mucosa was measured 4 h after infection, allowing us to correlate enterotoxin secretion with gene regulation. Microarray analysis showed on the one hand a non-toxin related general antibacterial response comprising genes such as PAP, MMP1 and IL8. On the other hand, results suggest a dominant role for STb in small intestinal secretion early after post-weaning infection, as well as in the induced innate immune response through differential regulation of immune mediators like interleukin 1 and interleukin 17.  相似文献   

10.
Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of enterotoxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a type II secretion system (T2SS). We sought to determine the relationship between the capacity to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. Sixteen WT ETEC strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside enzyme-linked immunosorbent assay to measure LT concentrations in culture supernatants. All strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly virulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-origin WT strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture) explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobiotic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86), or a non-enterotoxigenic WT strain (G58-1). All 16 porcine ETEC strains were positive by PCR analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin strains for which complete genomic sequences were available revealed a T2SS with a high degree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clustered together in the same clade with other porcine-origin ETEC strains in the database, UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct relationship between the predicted ATP-binding capacities and LT secretion levels as follows: H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5 kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-binding capacity of GspE and LT secretion, and between the latter and virulence.  相似文献   

11.
Entertoxigenic Escherichia coli (ETEC) strains of nineteen serogroups which produced colonization factors (coli-surface-associated antigens CS5, CS6, CS7 and CS17, colonization factor antigen CFA/III and putative colonization factors PCFO159:H4, PCFO166 and PCFO9) were tested for hybridization with a DNA probe containing the cfaD sequence that regulates expression of CFA/I. Strong colony hybridization, similar to that with the CFA/I-positive control strain H10407, occurred with ETEC strains of serogroups O27, O159 and O169 which produced CS6 antigen, and with all the strains which produced PCFO166 fimbriae. Weak colony hybridization, compared to the control strain, was found with ETEC producing CS5 fimbriae with CS6 antigen, CFA/III fimbriae with CS6 antigen, CS7 fimbriae or PCFO159:H4 fimbriae. CS6-antigen-positive strains of serogroups O79, O89 and O148 and all the CS17-antigen-positive and PCFO9-fimbriae-positive strains were negative in colony hybridization tests with the cfaD probe. Plasmid DNA of nine ETEC strains and their colonization-factor-negative derivatives was tested for hybridization with the cfaD probe and with ST and LT oligonucleotide probes. The sequences that hybridized with the cfaD probe were on the plasmids which coded for enterotoxin production. Fifteen strains were transformed with NTP513, a recombinant plasmid which contains the CFA/I region 1 fimbrial subunit operon but lacks a functional cfaD sequence, in order to determine whether DNA in any of these strains could substitute for the cfaD sequence in the regulation of production of CFA/I fimbriae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3',5'-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.  相似文献   

13.
Aims: In this study, the main objective was to verify the hypothesis of induction of ‘viable but non‐culturable’ (VBNC) forms of enterotoxigenic Escherichia coli (ETEC) during incubation in water. Methods and Results: Six clinically isolated ETEC strains were studied. Viable counts showed culturable ETEC bacteria for up to 3 months in freshwater but only two out of six strains were culturable in seawater at this time point. Although the bacterial cells remained intact, no production or secretion of heat‐labile (LT) or heat‐stable (ST) enterotoxins was observed using GM1‐ELISA methods. However, genes encoding ETEC toxins (STh and LT), colonization factors (CS7 and CS17), gapA and 16S RNA were expressed during 3 months in both sea water and freshwater microcosms as determined by real‐time RT‐PCR on cDNA derived from the bacteria. Conclusions: Clinically isolated ETEC strains can survive for long periods in both sea water and freshwater. The bacterial cells remain intact, and the gene expression of virulence genes and genes involved in metabolic pathways are detected after 3 months. Significance and Impact of the Study: These results indicate that ETEC bacteria can enter a VBNC state during stressful conditions and suggest that ETEC has the potential to be infectious after long‐term incubation in water.  相似文献   

14.
Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 (with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an ~10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.  相似文献   

15.
16.
Aims:  To find out the prevalence of different serogroups of Escherichia coli ( E. coli ) and to detect heat-stable (ST) and heat-labile (LT) enterotoxin genes of enterotoxigenic E. coli (ETEC) from the faeces of mithun calves with diarrhoea.
Methods and Results:  Faecal samples obtained from 65 diarrhoeic mithun calves of under 2 months of age were examined for E. coli using polymerase chain reaction (PCR). Fifty-four E. coli isolates were obtained from those samples, which belonged to 38 different serogroups. Out of 54 isolates tested by PCR, two isolates (3·70%) belonging to serogroups O26 and O55 were found to possess gene that code for ST enterotoxin and one isolate (1·85%) belonging to serogroup O125 was found to carry LT enterotoxin gene.
Conclusions:  Escherichia coli isolates from diarrhoeic mithun calves were found to possess ST and LT enterotoxin genes, which are designated as ETEC, and these isolates can be detected through PCR using specific primers.
Significance and Impact of the Study:  This study reports the isolation of ETEC possessing ST and LT enterotoxin genes for the first time and ETEC could be a cause of diarrhoea in mithun calves leading to calf mortality.  相似文献   

17.
18.
Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of infectious diarrhea in developing countries. In order to characterize the molecular features of human ETEC isolates from Korea, we investigated the profiles of enterotoxin and colonization factor (CF) genes by polymerase chain reaction (PCR) and performed multilocus sequence typing (MLST) with a total of 291 ETEC strains. The specimens comprised 258 domestic strains isolated from patients who had diarrhea and were from widely separated geographic regions in Korea and 33 inflow strains isolated from travelers visiting other Asian countries. Heat-stable toxin (STh)-possessing ETEC strains were more frequent than heat-labile toxin (LT)-possessing ETEC strains in the domestic isolates, while the detection rates of both enterotoxin genes were similar in the inflow isolates. The profile of CF genes of domestic isolates was similar to that of inflow isolates and the major CF types of the strains were CS3-CS21-CS1/PCF071 and CS2-CS3-CS21. Most of these 2 CF types were detected in ETEC strains that possess both lt and sth genes. The major MLSTST types of domestic isolates were ST171 and ST955. Moreover, the 2 major CF types were usually found concomitantly with the 2 major MLST STs, ST171 and ST955. In conclusion, our genotyping results may provide useful information for guiding the development of geographically specific vaccines against human ETEC isolates.  相似文献   

19.
Enterotoxigenic Escherichia coli (ETEC) may produce heat-labile toxin (LT) I and LTII and heat-stable toxin (ST) I and STII, while shiga toxin producing E. coli (STEC) strains, including enterohaemorrhagic E. coli (EHEC), may produce shiga-like toxin (SLT) I and/or SLTII. Both ETEC and STEC are pathogenic to humans, pigs and cattle. As contamination of environmental water by any of these pathogenic E. coli cells is possible, a multiplex polymerase chain reaction (PCR) system for the rapid screening of LTI, STII, and SLTI and SLTII genes of E. coli was developed. The PCR primers used were the SLTI and SLTII genes specific primers developed by the present authors and the LTI and STII genes specific primers reported by other laboratories. The detection specificity of this multiplex PCR system was confirmed by PCR assay of ETEC, STEC and other E. coli cells as well as non- E. coli bacteria. Its detection limit was 102–103 cfu each of the target cells per assay. When this multiplex PCR system was used for the rapid screening of LTI, STII ETEC and STEC in water samples such as tap, underground and lake waters, it was found that after the enrichment step, as few as 100 cells 100 ml−1 of the water sample could be detected. Therefore, this PCR system could be used for the rapid monitoring of ETEC and/or STEC cells contaminating water samples.  相似文献   

20.
We have investigated the presence of the aerobactin system and the location of the aerobactin genes in enteroinvasive strains of Escherichia coli. Also, we cloned the aerobactin region and its flanking sequences from the chromosome of a strain of Shigella flexneri and compared the molecular organization of the aerobactin genes in the two genera. Of the 11 enteroinvasive E. coli strains studied, 5 possessed the aerobactin genes, which were located on the chromosome in each case. These strains produced and utilized aerobactin and also were susceptible to the bacteriocin cloacin-DF13. Restriction endonuclease mapping and hybridization experiments showed that the regions corresponding to the aerobactin-specific sequences were very similar in both enteroinvasive E. coli and S. flexneri. However, differences were found in the region corresponding to the aerobactin receptor gene. The regions flanking the aerobactin system in enteroinvasive E. coli and S. flexneri exhibited some similarities but were different from those in pColV-K30. Under iron-limiting conditions, aerobactin-producing enteroinvasive E. coli and S. flexneri synthesized outer-membrane proteins of 76 and 77 kDa, respectively, which cross-reacted immunologically with rabbit antiserum raised against the 74 kDa pColV-K30-encoded ferric aerobactin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号